共查询到20条相似文献,搜索用时 109 毫秒
1.
针对约束多目标优化算法(COA:Constrained Optimization Algorithms)中存在的难以有效兼顾收敛性和多样性的问题,提出了采用协同进化策略的多目标优化算法(CoMaC)。首先,将一个COA转化为一个带动态约束处理的多目标进化算法。然后采用差分进化(DE:Differential Evolution)生成第1种群,并将其中的已知可行解选入第2种群,并与第1种群协同进化。第1种群通过保持原约束条件的全局搜索加快收敛。第2种群通过局部搜索进化,保持并获得更多可行解。最后采用标准约束多目标测试函数进行实验,以测试所提出算法的性能。实验结果表明,与使用惩罚函数处理约束问题(PF:Penalty Function)和使用动态处理约束边界方法(DCMaOP:Dynamic Constrained Many Objective optimization Problem)相比,所提算法在反向世代距离(IGD:Inverted Generational Distance)和超体积(HV:Hypervolume)两个指标上均取得了良好的结果,说明所提算法可以有效地兼顾收敛性和多... 相似文献
2.
将微分进化算法的应用范围从求解无约束单目标优化推广到求解一般情形的多目标优化.与传统优化算法及一般的进化算法相比,该算法特点在于直接将约束条件以及多目标性结合到进化算子中.算例表明,该算法是有效的. 相似文献
3.
将微分进化算法的应用范围从求解无约束单目标优化推广到求解一般情形的多目标优化。与传统优化算法及一般的进化算法相比,该算法特点在于直接将约束条件以及多目标性结合到进化算子中。算例表明,该算法是有效的。 相似文献
4.
针对现有面向多目标优化问题的约束处理方法存在求解效率不足,基于分解策略的多目标进化算法受到约束限制导致求解性能低的问题,提出一种基于记忆策略的动态分解约束多目标进化算法.本文首先引入具有记忆功能的归档集,改进基于短暂忽略非容许解的约束处理方法,提高算法的求解鲁棒性.然后结合基于分解的多目标进化算法,设计一种动态分配搜索... 相似文献
5.
多目标进化算法研究综述 总被引:3,自引:0,他引:3
于建伟 《海南大学学报(自然科学版)》2005,23(4):378-382
简要介绍了多目标进化算法(MOEAs)的基本框架、研究历史、总体分类和主要方法,同时讨论了进化算法(EAs)在多目标优化的应用中的几个关键性问题及今后需进一步研究的工作. 相似文献
6.
基于进化算法的约束处理技术 总被引:2,自引:0,他引:2
约束优化问题是科学和工程应用领域经常会遇到的一类数学规划问题,因而对其研究具有十分重要的理论和实际意义.进化算法是一种模拟自然进化过程的全局优化方法。综述基于进化算法的约束处理技术研究现状,提出几个值得关注的研究问题。 相似文献
7.
进化算法具有求解多目标优化问题的优点。本文首先对多目标优化问题进行了描述;然后讨论了目前几种主要的基于进化算法的多目标优化方法;最后介绍了基于目标空间分割的多目标进化算法的研究现状以及面临的问题。 相似文献
8.
为了在基于克隆选择的免疫多目标进化算法中提高种群的多样性,提出了一种基于目标函数变化率的多进化策略自适应免疫多目标进化算法,以采用克隆选择的免疫多目标进化算法为基础,根据目标函数的变化率,在不同的进化阶段自适应地选择两种不同的差分进化策略,在保证算法收敛速度的同时兼顾种群的多样性,避免算法陷入局部最优。选用DTLZ测试函数对新算法进行了性能测试,并与其它算法进行了比较。结果显示,新算法解的分布性和均匀性有了一定程度的提高。 相似文献
9.
针对带盒子约束的多目标优化问题,提出一种多目标优化进化算法。在选择过程中.采用Pareto支配和聚集距离排序来挑选出有代表性的个体。在变异过程中,沿着权重梯度方向搜索来寻找可行的Pareto最优解。最后,采用两个数值算例测试算法的性能,通过与NSGA—II的比较结果表明该算法能获得多目标优化问题的可行Pareto最优解并且具有很好的分散性。 相似文献
10.
多目标投资决策模型的进化算法 总被引:6,自引:0,他引:6
马良 《上海理工大学学报》1998,20(1):56-59
对一般的多目标投资决策问题给出了一种进化算法,并在微机上进行了大量试算,获得了良好的效果。 相似文献
11.
现实中存在许多大规模多目标优化问题(Large-scale Multi-objective Optimization Problem,LSMOP),它们对传统的多目标进化算法(Multi-objective Evolutionary Algorithm,MOEA)提出了挑战,有关LSMOP的研究已成为多目标优化领域的研究热点之一。本文系统分析了近年来提出的各种大规模多目标进化优化算法(Large-scale Multi-objective Optimization Evolutionary Algorithm,LSMOEA),根据这些算法的主要思想和技术特点将它们粗略地分成4种类型,即基于协同进化(Cooperative Coevolution,CC)、基于决策变量分析、基于问题重构以及其他方法,并对今后LSMOP的研究方向提出建议,以期将LSMOP的研究引向深入。 相似文献
12.
针对目前基于正则性辅助的多目标优化算法缺少局部信息以及模型参数设置对多目标优化算法的影响问题,本研究提出一种基于正则性辅助的多目标优化进化算法(Regularity Assisted Multi-objective Optimization Evolutionary Algorithm, RAMEA)。该方法将高斯采样和基于邻域的交配重组结合并用于子代重组,同时使用k-均值聚类方法获取流形结构信息,将种群划分为K个聚类,用K个聚类的均值向量建立高斯概率模型,从中抽取K个后代,然后将取样解作为父代添加到每个集群中去交配生成其他子代解。实验对比结果表明,研究提出的基于正则性辅助的多目标优化进化算法明显优于其他算法,其参数灵敏度和有效性表现更加突出。 相似文献
13.
近年来,多目标优化问题求解已成为演化计算的一个重要研究方向。而基于Pareto最优概念的多目标演化算法则是当前演化计算的研究热点。多目标演化算法的研究目标是使算法种群决速收敛并均匀分布于问题的非劣最优域。介绍了多目标优化的概念,在比较分析了目前较成功的多目标演化算法的基础上,提出了一种新的解决数值优化问题的稳态淘汰演化算法。 相似文献
14.
一种改进的非支配排序遗传算法 总被引:2,自引:0,他引:2
为克服非支配排序遗传算法计算复杂度高, 未采用精英策略, 需要特别指定共享半径的缺点,提出了一种改进的非支配排序遗传算法.通过实验验证,该算法在几个给定的函数优化时都能取得比较好的结果. 相似文献
15.
该文针对一类决策空间维数可变且带约束条件的动态多目标优化问题,基于生物免疫系统的机理,提出一种结构简单、易于应用的动态约束多目标优化免疫算法.算法设计中,借助抗体识别功能,设计环境识别规则,加速相似环境的寻优过程;依据约束控制概念,设计挑选较好抗体的免疫选择操作;引入基于两级概率控制方案的两种不同的变异策略,进行抗体变异.借助三种性能评价指标,通过该算法与两种出众的算法比较,数值实验结果表明此算法能够获得满意的搜索效果以及具有较强的环境跟踪能力. 相似文献
16.
针对多目标优化问题,传统进化算法维护种群多样性的方法主要依赖于共享函数,但其小生境半径难以进行有效地设置。该文提出一种改进的求解多目标优化问题的进化算法,新算法引入了近邻函数准则(NFC),将其用于选择过程,可以从种群中选择出较好的个体,并确保种群的多样性。此外,新算法中融入了一种基于近邻函数准则的Pareto候选集的维护方法,利用这种方法可以有效地维护候选解集中个体的多样性。对所提出的算法,从时间和空间复杂度进行了理论分析。对一组典型优化问题的测试表明:该文提出的算法具有较高的搜索性能,解集分布的多样性与收敛性均较理想。 相似文献
17.
18.
在求解非线性约束规划问题中,对其约束条件的处理是一个难点问题.本文提出了一个非线性约束规划的双群体进化算法,与以往存在的约束优化算法不同之处在于:定义个体对约束条件的函数值作为约束违犯度对群体中的个体进行度量,目标函数值作为最优解的度量.首先考虑了标准的约束规划问题,简单介绍了约束优化问题中约束条件的处理方法,给出了与这些方法不同的处理方法.针对约束违犯度,定义了两个群体,即可行群体与不可行群体.然后给出了双群体进化算法详细步骤,用5个Benchmark函数测试了此算法,并通过与其它已知算法对此5个函数的计算结果的比较,验证了算法的可行性和有效性. 相似文献
19.
针对广义预测控制(GPC)的滚动优化对受限控制量求解的复杂性,笔者提出一种基于差分型思维进化算法的受限广义预测控制方法(DMEAGPC)。用差分型思维进化算法处理带约束的非线性优化问题,以此作为滚动优化策略,求得最优控制律。并将该算法应用于电厂再热汽温系统,仿真结果验证了该算法的有效性和可靠性。 相似文献
20.
针对供应链网络优化领域中的混合流水作业调度问题提出了一种新的多目标演化优化算法。给出了这类问题的通用优化模型,在此基础上,提出了基于流程的矩阵基因编码方案,动态适应度分配机制,并引入小生境保优策略构造了算法过程,利用收敛进程参数分析了算法的收敛性能。性能分析和算例实验表明算法对于高维多目标优化问题是有效的,且能够以较快的速度收敛。 相似文献