首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
To ascertain the role of cyclin-dependent kinase 4 (Cdk4) in vivo, we have targeted the mouse Cdk4 locus by homologous recombination to generate two strains of mice, one that lacks Cdk4 expression and one that expresses a Cdk4 molecule with an activating mutation. Embryonic fibroblasts proliferate normally in the absence of Cdk4 but have a delayed S phase on re-entry into the cell cycle. Moreover, mice devoid of Cdk4 are viable, but small in size and infertile. These mice also develop insulin-deficient diabetes due to a reduction in beta-islet pancreatic cells. In contrast, mice expressing a mutant Cdk4 that cannot bind the cell-cycle inhibitor P16INK4a display pancreatic hyperplasia due to abnormal proliferation of beta-islet cells. These results establish Cdk4 as an essential regulator of specific cell types.  相似文献   

2.
The polo-like kinase Plk4 (also called Sak) is required for late mitotic progression, cell survival and postgastrulation embryonic development. Here we identified a phenotype resulting from Plk4 haploinsufficiency in Plk4 heterozygous cells and mice. Plk4+/- embryonic fibroblasts had increased centrosomal amplification, multipolar spindle formation and aneuploidy compared with wild-type cells. The incidence of spontaneous liver and lung cancers was approximately 15 times high in elderly Plk4+/- mice than in Plk4+/+ littermates. Using the in vivo model of partial hepatectomy to induce synchronous cell cycle entry, we determined that the precise regulation of cyclins D1, E and B1 and of Cdk1 was impaired in Plk4+/- regenerating liver, and p53 activation and p21 and BubR1 expression were suppressed. These defects were associated with progressive cell cycle delays, increased spindle irregularities and accelerated hepatocellular carcinogenesis in Plk4+/- mice. Loss of heterozygosity occurs frequently (approximately 60%) at polymorphic markers adjacent to the PLK4 locus in human hepatoma. Reduced Plk4 gene dosage increases the probability of mitotic errors and cancer development.  相似文献   

3.
The mitogen-activated protein kinase (MAPK) p38alpha controls inflammatory responses and cell proliferation. Using mice carrying conditional Mapk14 (also known as p38alpha) alleles, we investigated its function in postnatal development and tumorigenesis. When we specifically deleted Mapk14 in the mouse embryo, fetuses developed to term but died shortly after birth, probably owing to lung dysfunction. Fetal hematopoietic cells and embryonic fibroblasts deficient in p38alpha showed increased proliferation resulting from sustained activation of the c-Jun N-terminal kinase (JNK)-c-Jun pathway. Notably, in chemical-induced liver cancer development, mice with liver-specific deletion of Mapk14 showed enhanced hepatocyte proliferation and tumor development that correlated with upregulation of the JNK-c-Jun pathway. Furthermore, inactivation of JNK or c-Jun suppressed the increased proliferation of Mapk14-deficient hepatocytes and tumor cells. These results demonstrate a new mechanism whereby p38alpha negatively regulates cell proliferation by antagonizing the JNK-c-Jun pathway in multiple cell types and in liver cancer development.  相似文献   

4.
Caussinus E  Gonzalez C 《Nature genetics》2005,37(10):1125-1129
Loss of cell polarity and cancer are tightly correlated, but proof for a causative relationship has remained elusive. In stem cells, loss of polarity and impairment of asymmetric cell division could alter cell fates and thereby render daughter cells unable to respond to the mechanisms that control proliferation. To test this hypothesis, we generated Drosophila melanogaster larval neuroblasts containing mutations in various genes that control asymmetric cell division and then assayed their proliferative potential after transplantation into adult hosts. We found that larval brain tissue carrying neuroblasts with mutations in raps (also called pins), mira, numb or pros grew to more than 100 times their initial size, invading other tissues and killing the hosts in 2 weeks. These tumors became immortal and could be retransplanted into new hosts for years. Six weeks after the first implantation, genome instability and centrosome alterations, two traits of malignant carcinomas, appeared in these tumors. Increasing evidence suggests that some tumors may be of stem cell origin. Our results show that loss of function of any of several genes that control the fate of a stem cell's daughters may result in hyperproliferation, triggering a chain of events that subverts cell homeostasis in a general sense and leads to cancer.  相似文献   

5.
6.
Stem cell function is central for the maintenance of normal tissue homeostasis. Here we show that deletion of p38alpha mitogen-activated protein (MAP) kinase in adult mice results in increased proliferation and defective differentiation of lung stem and progenitor cells both in vivo and in vitro. We found that p38alpha positively regulates factors such as CCAAT/enhancer-binding protein that are required for lung cell differentiation. In addition, p38alpha controls self-renewal of the lung stem and progenitor cell population by inhibiting proliferation-inducing signals, most notably epidermal growth factor receptor. As a consequence, the inactivation of p38alpha leads to an immature and hyperproliferative lung epithelium that is highly sensitized to K-Ras(G12V)-induced tumorigenesis. Our results indicate that by coordinating proliferation and differentiation signals in lung stem and progenitor cells, p38alpha has a key role in the regulation of lung cell renewal and tumorigenesis.  相似文献   

7.
Inhibition of telomerase is proposed to limit the growth of cancer cells by triggering telomere shortening and cell death. Telomere maintenance by telomerase is sufficient, in some cell types, to allow immortal growth. Telomerase has been shown to cooperate with oncogenes in transforming cultured primary human cells into neoplastic cells, suggesting that telomerase activation contributes to malignant transformation. Moreover, telomerase inhibition in human tumour cell lines using dominant-negative versions of TERT leads to telomere shortening and cell death. These findings have led to the proposition that telomerase inhibition may result in cessation of tumour growth. The absence of telomerase from most normal cells supports the potential efficacy of anti-telomerase drugs for tumour therapy, as its inhibition is unlikely to have toxic effects. Mice deficient for Terc RNA (encoding telomerase) lack telomerase activity, and constitute a model for evaluating the role of telomerase and telomeres in tumourigenesis. Late-generation Terc-/- mice show defects in proliferative tissues and a moderate increase in the incidence of spontaneous tumours in highly proliferative cell types (lymphomas, teratocarcinomas). The appearance of these tumours is thought to be a consequence of chromosomal instability in these mice. These observations have challenged the expected effectiveness of anti-telomerase-based cancer therapies. Different cell types may nonetheless vary in their sensitivity to the chromosomal instability produced by telomere loss or to the activation of telomere-rescue mechanisms. Here we show that late-generation Terc-/- mice, which have short telomeres and are telomerase-deficient, are resistant to tumour development in multi-stage skin carcinogenesis. Our results predict that an anti-telomerase-based tumour therapy may be effective in epithelial tumours.  相似文献   

8.
Telomeres in most immortal cells are maintained by the enzyme telomerase, allowing cells to divide indefinitely. Some telomerase-negative tumors and immortal cell lines maintain long heterogeneous telomeres by the ALT (alternative lengthening of telomeres) mechanism; such tumors are expected to be resistant to anti-telomerase drug therapies. Occasionally telomerase-negative Saccharomyces cerevisiae mutants survive, and 10% of them (type II survivors) have unstable telomeres. As in human ALT+ cells, short telomeres in yeast type II survivors lengthen abruptly; in yeast, this is dependent on the recombination proteins Rad52p and Rad50p. In human cells, ALT involves copying of sequence from a donor to a recipient telomere. We have characterized for the first time a class of complex telomere mutations seen only in ALT+ cells. The mutant telomeres are defined by the replacement of the progenitor telomere at a discrete point (fusion point) with a different telomere repeat array. Among 19 characterized fusion points, one occurred within the first six repeats of the telomere, indicating that these recombination-like events can occur anywhere within the telomere. One mutant telomere may have been involved in a secondary recombination-like mutation event, suggesting that these mutations are sporadic but ongoing in ALT+ cells. We also identified simple intra-allelic mutations at high frequency, which evidently contribute to telomere instability in ALT+ cells.  相似文献   

9.
10.
11.
To preserve genetic integrity, mammalian cells exposed to ionizing radiation activate the ATM kinase, which initiates a complex response-including the S-phase checkpoint pathways-to delay DNA replication. Defects in ATM or its substrates Nbs1 or Chk2 (ref. 3), the Nbs1-interacting Mre11 protein, or the Chk2-regulated Cdc25A-Cdk2 cascade all cause radio-resistant DNA synthesis (RDS). It is unknown, however, whether these proteins operate in a common signaling cascade. Here we show that experimental blockade of either the Nbs1-Mre11 function or the Chk2-triggered events leads to a partial RDS phenotype in human cells. In contrast, concomitant interference with Nbs1-Mre11 and the Chk2-Cdc25A-Cdk2 pathways entirely abolishes inhibition of DNA synthesis induced by ionizing radiation, resulting in complete RDS analogous to that caused by defective ATM. In addition, Cdk2-dependent loading of Cdc45 onto replication origins, a prerequisite for recruitment of DNA polymerase, was prevented upon irradiation of normal or Nbs1/Mre11-defective cells but not cells with defective ATM. We conclude that in response to ionizing radiation, phosphorylations of Nbs1 and Chk2 by ATM trigger two parallel branches of the DNA damage-dependent S-phase checkpoint that cooperate by inhibiting distinct steps of DNA replication.  相似文献   

12.
Chen T  Hevi S  Gay F  Tsujimoto N  He T  Zhang B  Ueda Y  Li E 《Nature genetics》2007,39(3):391-396
Studies have shown that DNA (cytosine-5-)-methyltransferase 1 (DNMT1) is the principal enzyme responsible for maintaining CpG methylation and is required for embryonic development and survival of somatic cells in mice. The role of DNMT1 in human cancer cells, however, remains highly controversial. Using homologous recombination, here we have generated a DNMT1 conditional allele in the human colorectal carcinoma cell line HCT116 in which several exons encoding the catalytic domain are flanked by loxP sites. Cre recombinase-mediated disruption of this allele results in hemimethylation of approximately 20% of CpG-CpG dyads in the genome, coupled with activation of the G2/M checkpoint, leading to arrest in the G2 phase of the cell cycle. Although cells gradually escape from this arrest, they show severe mitotic defects and undergo cell death either during mitosis or after arresting in a tetraploid G1 state. Our results thus show that DNMT1 is required for faithfully maintaining DNA methylation patterns in human cancer cells and is essential for their proliferation and survival.  相似文献   

13.
A therapeutic strategy for treating cancer is to target and eradicate cancer stem cells (CSCs) without harming their normal stem cell counterparts. The success of this approach relies on the identification of molecular pathways that selectively regulate CSC function. Using BCR-ABL-induced chronic myeloid leukemia (CML) as a disease model for CSCs, we show that BCR-ABL downregulates the Blk gene (encoding B-lymphoid kinase) through c-Myc in leukemic stem cells (LSCs) in CML mice and that Blk functions as a tumor suppressor in LSCs but does not affect normal hematopoietic stem cells (HSCs) or hematopoiesis. Blk suppresses LSC function through a pathway involving an upstream regulator, Pax5, and a downstream effector, p27. Inhibition of this Blk pathway accelerates CML development, whereas increased activity of the Blk pathway delays CML development. Blk also suppresses the proliferation of human CML stem cells. Our results show the feasibility of selectively targeting LSCs, an approach that should be applicable to other cancers.  相似文献   

14.
Heterozygous deletions of 17p13.3 result in the human neuronal migration disorders isolated lissencephaly sequence (ILS) and the more severe Miller-Dieker syndrome (MDS). Mutations in PAFAH1B1 (the gene encoding LIS1) are responsible for ILS and contribute to MDS, but the genetic causes of the greater severity of MDS are unknown. Here, we show that the gene encoding 14-3-3epsilon (YWHAE), one of a family of ubiquitous phosphoserine/threonine-binding proteins, is always deleted in individuals with MDS. Mice deficient in Ywhae have defects in brain development and neuronal migration, similar to defects observed in mice heterozygous with respect to Pafah1b1. Mice heterozygous with respect to both genes have more severe migration defects than single heterozygotes. 14-3-3epsilon binds to CDK5/p35-phosphorylated NUDEL and this binding maintains NUDEL phosphorylation. Similar to LIS1, deficiency of 14-3-3epsilon results in mislocalization of NUDEL and LIS1, consistent with reduction of cytoplasmic dynein function. These results establish a crucial role for 14-3-3epsilon in neuronal development by sustaining the effects of CDK5 phosphorylation and provide a molecular explanation for the differences in severity of human neuronal migration defects with 17p13.3 deletions.  相似文献   

15.
In a wide variety of animal species, oocyte maturation is arrested temporarily at prophase of meiosis I (ref. 1). Resumption of meiosis requires activation of cyclin-dependent kinase-1 (CDK1, p34cdc2), one component of maturation-promoting factor (MPF). The dual specificity phosphatases Cdc25a, Cdc25b and Cdc25c are activators of cyclin-dependent kinases; consequently, they are postulated to regulate cell-cycle progression in meiosis and mitosis as well as the DNA-damage response. We generated Cdc25b-deficient (Cdc25b-/-) mice and found that they are viable. As compared with wildtype cells, fibroblasts from Cdc25b-/- mice grew vigorously in culture and arrested normally in response to DNA damage. Female Cdc25b-/- mice were sterile, and Cdc25b-/- oocytes remained arrested at prophase with low MPF activity. Microinjection of wildtype Cdc25b mRNA into Cdc25b-/- oocytes caused activation of MPF and resumption of meiosis. Thus, Cdc25b-/- female mice are sterile because of permanent meiotic arrest resulting from the inability to activate MPF. Cdc25b is therefore essential for meiotic resumption in female mice. Mice lacking Cdc25b provide the first genetic model for studying the mechanisms regulating prophase arrest in vertebrates.  相似文献   

16.
Cell-cycle checkpoints help to protect the genomes of proliferating cells under genotoxic stress. In multicellular organisms, cell proliferation is often directed toward differentiation during development and throughout adult homeostasis. To prevent the formation of differentiated cells with genetic instability, we hypothesized that genotoxic stress may trigger a differentiation checkpoint. Here we show that exposure to genotoxic agents causes a reversible inhibition of myogenic differentiation. Muscle-specific gene expression is suppressed by DNA-damaging agents if applied prior to differentiation induction but not after the differentiation program is established. The myogenic determination factor, MyoD (encoded by Myod1), is a target of the differentiation checkpoint in myoblasts. The inhibition of MyoD by DNA damage requires a functional c-Abl tyrosine kinase (encoded by Abl1), but occurs in cells deficient for p53 (transformation-related protein 53, encoded by Trp53) or c-Jun (encoded by the oncogene Jun). These results support the idea that genotoxic stress can regulate differentiation, and identify a new biological function for DNA damage-activated signaling network.  相似文献   

17.
Retinal progenitor cells regulate their proliferation during development so that the correct number of each cell type is made at the appropriate time. We found that the homeodomain protein Prox1 regulates the exit of progenitor cells from the cell cycle in the embryonic mouse retina. Cells lacking Prox1 are less likely to stop dividing, and ectopic expression of Prox1 forces progenitor cells to exit the cell cycle. During retinogenesis, Prox1 can be detected in differentiating horizontal, bipolar and AII amacrine cells. Horizontal cells are absent in retinae of Prox1-/- mice and misexpression of Prox1 in postnatal progenitor cells promotes horizontal-cell formation. Thus, Prox1 activity is both necessary and sufficient for progenitor-cell proliferation and cell-fate determination in the vertebrate retina.  相似文献   

18.
The Abl kinase inhibitor imatinib mesylate is the preferred treatment for Philadelphia chromosome-positive (Ph(+)) chronic myeloid leukemia (CML) in chronic phase but is much less effective in CML blast crisis or Ph(+) B-cell acute lymphoblastic leukemia (B-ALL). Here, we show that Bcr-Abl activated the Src kinases Lyn, Hck and Fgr in B-lymphoid cells. BCR-ABL1 retrovirus-transduced marrow from mice lacking all three Src kinases efficiently induced CML but not B-ALL in recipients. The kinase inhibitor CGP76030 impaired the proliferation of B-lymphoid cells expressing Bcr-Abl in vitro and prolonged survival of mice with B-ALL but not CML. The combination of CGP76030 and imatinib was superior to imatinib alone in this regard. The biochemical target of CGP76030 in leukemia cells was Src kinases, not Bcr-Abl. These results implicate Src family kinases as therapeutic targets in Ph(+) B-ALL and suggest that simultaneous inhibition of Src and Bcr-Abl kinases may benefit individuals with Ph(+) acute leukemia.  相似文献   

19.
VEGF links hippocampal activity with neurogenesis, learning and memory   总被引:26,自引:0,他引:26  
An enriched environment is associated with hippocampal plasticity, including improved cognitive performance and increased neurogenesis. Here, we show that hippocampal expression of vascular endothelial growth factor (VEGF) is increased by both an enriched environment and performance in a spatial maze. Hippocampal gene transfer of VEGF in adult rats resulted in approximately 2 times more neurogenesis associated with improved cognition. In contrast, overexpression of placental growth factor, which signals through Flt1 but not kinase insert domain protein receptors (KDRs), had negative effects on neurogenesis and inhibited learning, although it similarly increased endothelial cell proliferation. Expression of a dominant-negative mutant KDR inhibited basal neurogenesis and impaired learning. Coexpression of mutant KDR antagonized VEGF-enhanced neurogenesis and learning without inhibiting endothelial cell proliferation. Furthermore, inhibition of VEGF expression by RNA interference completely blocked the environmental induction of neurogenesis. These data support a model in which VEGF, acting through KDR, mediates the effect of the environment on neurogenesis and cognition.  相似文献   

20.
The c-kit-encoded transmembrane tyrosine kinase receptor for stem cell factor (Kit/SCF-R) is required for normal haematopoiesis, melanogenesis and gametogenesis. However, the roles of individual Kit/SCF-R-induced signalling pathways in the control of developmental processes in the intact animal are completely unknown. To examine the function of SCF-induced phosphatidylinositol (PI) 3'-kinase activation in vivo, we employed the Cre-loxP system to mutate the codon for Tyr719, the PI 3'-kinase binding site in Kit/SCF-R, to Phe in the genome of mice by homologous recombination. Homozygous (Y719F/Y719F) mutant mice are viable. The mutation completely disrupted PI 3'-kinase binding to Kit/SCF-R and reduced SCF-induced PI 3'-kinase-dependent activation of Akt by 90%. The mutation induced a gender- and tissue-specific defect. Although there are no haematopoietic or pigmentation defects in homozygous mutant mice, males are sterile due to a block in spermatogenesis, with initially decreased proliferation and subsequent extensive apoptosis occurring at the spermatogonial stem-cell level. In contrast, female homozygotes are fully fertile. This is the first report so far demonstrating the role of an individual signalling pathway downstream of Kit/SCF-R in the intact animal. It provides the first in vivo model for male sterility caused by a discrete signalling pathway defect affecting early germ cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号