共查询到18条相似文献,搜索用时 78 毫秒
1.
应用滑模观测器方法进行了荷电状态估计的研究.基于改进的Thevenin等效电路模型建立了电池的状态空间模型,设计了一种能改善抖动问题的滑模状态观测器.为分析观测器的稳定性,对模型中的非线性项进行了分析,根据其导数有界的特性,利用拉格朗日中值定理给出了保证观测器收敛的条件,并由此确定观测器的设计参数.并且在Matlab环... 相似文献
2.
《西安交通大学学报》2017,(10)
针对锂离子电池充放电电压信号(DCV)中存在的噪声信号导致荷电状态(SOC)估计精度降低、波动较大的问题,提出了一种基于离散小波变换(DWT)的降噪扩展卡尔曼滤波(EKF)算法。该算法利用多分辨率分析(MRA)分解携带噪声的DCV信号,通过对比4种阈值硬阈值降噪规则对携带噪声的DCV信号的降噪处理效果,选择Stein无偏风险阈值硬阈值降噪规则调整小波系数,通过含自适应遗忘因子的递推最小二乘法辨识电池模型参数后,利用扩展卡尔曼滤波算法估计SOC。仿真结果表明:使用Stein无偏风险阈值硬阈值降噪规则有效地降低了DCV信号中的噪声信号;所提算法具有较好的鲁棒性,能够有效地提高SOC估计精度,使SOC估计误差范围控制在3%之内。 相似文献
3.
针对由静态的电池模型参数而造成的状态估计累计误差、噪声统计特性的时变不确定性等实用化的问题,基于无迹卡尔曼滤波(unscented Kalman filter, UKF)框架设计了一种自适应UKF的电池状态联合估计算法.在无迹变换(unscented transform,UT)时,对量测方程进行准线性化处理,降低了循环迭代过程中的计算开销;利用带遗忘因子的Sage-Husa自适应估计方法对过程噪声的统计特性参数进行递推估计与修正,提高了UKF估计算法的自适应容错能力;实时跟踪滤波的收敛性,若呈发散趋势时,通过自适应衰减因子对误差协方差进行调整以抑制滤波发散,保证了滤波过程的数值稳定性;采用联合估计策略对一阶Thevenim电池欧姆内阻模型参数进行在线更新,以确保动态测试工况下电池模型的准确性,从而提高了电池荷电状态(state of charge,SOC)以及电池健康状态(state of health,SOH)的估计精度.实验与仿真结果验证了该电池状态联合估计算法的可行性与有效性. 相似文献
4.
《科学技术与工程》2018,(22)
为了进一步提高锂离子动力电池荷电状态(SOC)的估计精度问题,在分析了电池电压、温度、电流和放电电量对电池SOC值的影响后,提出了一种新颖的混沌萤火虫算法(chaos firefly algorithm,CAF)和小波神经网络(WNN)相结合的锂离子动力电池SOC联合估计方法,该方法首次利用于电池SOC值估计中,通过新颖的混沌萤火虫算法优化小波神经网络,加入动量项优化网络的权值和调整修正参数,提高了网络的学习效率和SOC估计精度。克服神经网络进化缓慢并且容易陷入局部最小的缺陷,通过仿真和电池实际工况下实验,结果表明与WNN算法相比,所提出的方法具有更高的预测精度,均方根误差小于2%,验证了这一算法的可行性和有效性。 相似文献
5.
为了提高荷电状态(state-of-charge,SOC)估计精度,提出一种基于元素注意门的电池荷电状态递归神经网络,为输入向量的每个特征元素分配不同的重要程度,验证并分析不同神经元数量和隐藏层层数下的测试结果,利用确定的最优参数设置进行不同温度下的电池SOC估算,在不同电池特征参数下对SOC估计任务的重要性进行可视化分析。相同数据集的SOC估计精度表明,提出的网络模型在SOC估计任务中精度有明显提升。 相似文献
6.
电动汽车动力锂电池内部荷电状态估计是电池管理系统状态估计模块的核心,其无法通过仪器直接测量,仅能通过对电池外部电流、电压等参数进行测量并由此估计。准确的荷电状态估计对电池的寿命、容量和安全性管理至关重要。本文综述了用于电动汽车动力锂电池荷电状态估算的主要方法,根据算法差异将其分为传统的基于传感器测量的开路电压法、电流积分法和阻抗法,基于数据驱动的机器学习类算法以及基于模型的卡尔曼滤波器及粒子滤波器算法与融合类算法。深入介绍了不同估计算法的计算原理并由此分析比较了不同估计算法的计算复杂度、计算精度等特点。总结了现阶段锂离子电池荷电状态估算研究存在的问题,指出其研究趋势和未来发展方向将是更具泛化性和更高精度以及更佳实时性的多融合类估算方法。 相似文献
7.
电池的荷电状态(SOC)表示电池的可用容量,是电池管理系统重要参数之一.以锂离子电池为例,准确的估计可以提高其性能.为了建立锂离子电池的精确计算模型,提出了一种基于增强混沌教与学优化算法(ECTLBO)优化极限学习机(ELM)的SOC估计模型(ECTLBO-ELM).在ECTLBO-ELM模型中,一是利用增强混沌优化策... 相似文献
8.
为提高安时积分法对荷电状态估计的精度,解决其估计误差随时间不断增大的问题,采用极限学习机算法建立了安时积分法的误差预测模型,该模型以电池工作电流作为输入,对应的安时积分法荷电状态估计误差作为输出,将误差预测模型与安时积分法进行融合,对安时积分法的荷电状态估计值进行校正,形成了安时积分法和极限学习机方法融合的锂离子电池荷电状态在线估计方法.仿真分析结果表明,相比安时积分法,融合方法可有效减小荷电状态估计误差,克服安时积分法估计误差随时间不断增大的问题. 相似文献
9.
电动汽车蓄电池荷电状态的卡尔曼滤波估计 总被引:9,自引:0,他引:9
对电动汽车剩余里程的预测需要一个准确的蓄电池荷电状态(SOC)值,但目前任何方法都不能精确地测量蓄电池的剩余电量,以计算电动汽车蓄电池的荷电状态(SOC),在对目前常用的剩余电量计量方法分析的基础上,提出了一种基于电流的测量,然后利用卡尔曼滤波估计递推算法对蓄电池SOC进行实时估计,并在MATLB下进行了仿真。 相似文献
10.
《西安交通大学学报》2021,(1)
针对单一的等效电路模型难以准确描述全时段的锂离子电池、估计电池荷电状态(SOC)准确度低的问题,提出采用多模模型的锂离子电池荷电状态联合估计算法。利用电化学阻抗谱分析不同SOC下锂离子电池的阻抗分布,并以此构建等效电路模型来描述整个充放电过程中的锂离子电池,得到一种基于变阶RC模型的多模模型。利用贝叶斯定阶准则综合模型的准确度和实用性来确定具体阶数,采用带有遗忘因子的递推最小二乘法对模型参数进行在线辨识,利用扩展卡尔曼滤波算法(EKF)求得锂离子电池的实时SOC。在恒流工况以及动态应力测试工况下,与传统基于一阶RC模型和二阶RC模型的EKF算法进行了多组实验对比。结果表明:采用多模模型的联合算法在不同工况下估计的SOC精度提高了30%以上,并均可在两个迭代周期内追踪到准确值。 相似文献
11.
针对动力锂电池常用的荷电状态(SOC)估计算法存在的扩展卡尔曼滤波法精度低、无迹卡尔曼滤波法收敛速度慢等问题,在动力锂电池的Randles等效模型的基础上,通过脉冲放电实验对模型参数进行辨识;并设计了一种基于迭代扩展卡尔曼滤波(IEKF)与无迹卡尔曼滤波(UKF)联合估计的SOC估计法。在电池实验平台上设计模拟工况实验,实验分析表明:该算法的SOC初值修正速度快于EKF和UKF,计算量比UKF小,且稳态误差不超过1.5%,相对扩展卡尔曼滤波(EKF)提高了40%,是一个收敛快、计算量少、静差小的迭代估计算法。 相似文献
12.
电池荷电状态(SOC)的准确估计对延长电池使用寿命、提高电池利用率和保障电池安全性具有重要意义。在不同环境温度下进行了锂离子电池的基本性能试验和动态工况试验,建立了温变双极化等效电路模型。基于该模型,采用H无穷滤波算法代替传统的扩展卡尔曼滤波算法,在无需假设过程噪声和测量噪声均服从高斯分布的前提下,实现了SOC的精确估计。在考虑温变和电池模型存在误差的条件下进行验证,不同温度条件下的SOC估计最大误差保持在±0.03范围内,证明了所提出的SOC估计算法具有较高的温度适应性和鲁棒性。 相似文献
13.
基于RC等效电路的动力电池SOC估计算法 总被引:1,自引:0,他引:1
精确的动力电池剩余电量(SOC)是混合动力系统进行动力分配的重要依据,也是整车控制和降低使用成本的关键.因而,采用简化的RC电池等效电路,建立了电池的动态充、放电模型,把该模型转化为状态空间表达式.基于不同温度下的镍氢动力电池开路电压,通过混合脉冲功率性能(HPPC)测试方法测量,得到动力电池的动态工作内阻.根据电池的动态工作电流,在线实时估算动力电池的SOC.仿真及实验室测试结果表明,该方法的估算误差小于8%,验证了该SOC估算方法的有效性. 相似文献
14.
目的 健康状态是评估锂离子电池状态的关键参数,对锂离子电池的安全使用有着十分重要的意义,为了获得准确可靠的健康状态估计结果,建立基于卷积神经网络和Transformer的锂离子电池健康状态估计方法,利用不同模型的数据挖掘特性,将健康指标的深层信息和随循环周期增加的时序信息并行提取。方法 从锂离子电池放电过程中的部分电压和温度曲线中提取3个与健康状态相关性较强的健康指标作为模型输入,利用卷积神经网络强大的特征提取能力挖掘健康指标的局部特征,利用Transformer的顺序处理能力挖掘健康指标的时序特征,将健康指标的局部特征和时序特征进行特征融合,通过卷积和全局平均池化层输出健康状态估计值。结果 本研究使用MIT数据集进行实验验证,并与卷积神经网络和长短时记忆神经网络进行对比分析,所提出的方法的均方根误差和平均绝对误差是最低的,为0.11和0.08,最小相对误差为0.61%。结论 所提出的CNN-Transformer健康状态估计采用不同模型挖掘健康指标不同的特征信息,能够充分利用锂离子电池放电数据,且具有良好的估计效果。 相似文献
15.
为提高锂电池荷电状态(SOC)的估算精度,提出一种改进粒子群优化(PSO)算法;对最小二乘支持向量机(LSSVM)的惩罚参数C和核函数参数σ进行寻优,建立基于改进PSO-LSSVM的锂电池SOC估算模型.对磷酸铁锂充放电实验数据进行仿真分析,结果表明:改进PSO-LSSVM模型的平均相对误差为2.96%,均方根误差为0.018,全局最大相对误差为4.79%;改进PSO-LSSVM模型明显提高锂电池SOC估算精度. 相似文献
16.
为了解决变压器故障诊断中诊断效率低的问题,本文对萤火虫算法(FA)进行了改进,并与小波神经网络(WNN)相结合应用于变压器故障诊断中。小波神经网络结构简单,预测精度高,收敛速度快,但是网络参数不好选择,易陷入局部最优。本文结合混沌算法、粒子群算法、可变步长的思想来改进萤火虫算法,用于优化小波神经网络的参数,再将处理后的数据带入神经网络中进行训练与诊断。实验结果表明,该算法与BP神经网络、支持向量机、小波神经网络、遗传算法改进的小波神经网络和粒子群算法改进的小波神经网络相比诊断正确率均有所提高。 相似文献
17.
电网谐波检测技术是影响有源电力滤波(APF)发展的关键技术之一。由于电网谐波具有固有的非线性、随机性、分布性、非平稳性和影响因素的复杂性等特征,对谐波进行实时准确检测较难,因此研究对电力系统中的谐波进行检测的方法非常重要。提出将小波和神经网络结合构成小波神经网络的谐波检测法,对小波神经网络进行了设计,仿真结果表明该方法能实时、精确地对电网谐波进行检测。 相似文献
18.
电池SOC的估算精度是影响电动汽车性能的重要因素之一.针对传统的卡尔曼滤波方法在滤波时,需要已知系统噪声统计特性这一问题,本文在采用RC等效电路模型,运用多元线性回归方法辨识得到电池模型参数后,提出了采用模糊自适应卡尔曼滤波算法来估算电池SOC.城市道路循环工况仿真对比结果表明,该算法相比传统卡尔曼滤波方法具有更高精度,且能够将误差保持在2%以内,较好地提高了SOC估算精度. 相似文献