首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
数值仿真研究电子回旋共振离子推力器放电室的放电过程可以为推力器的优化设计提供指导和帮助,本文基于COMSOL多物理场仿真软件建立了5cm口径ECR推力器放电室的二维轴对称模型。通过磁场实际测量值和仿真结果的对比分析验证了模型的可靠性,并计算发现前极靴长度在7mm和9mm之间存在一个最佳特征值,当小于特征值时电子密度最大值、平均电子密度值和等离子体吸收功率均随极靴长度的增大而增大,而当大于特征值时电子密度最大值、平均电子密度值和等离子体吸收功率则随极靴长度的增大而减小。  相似文献   

2.
利用高频频率(HF)为94.92 MHz,低频频率(LF)为13.56 MHz获得了氩等离子体.采用发射光谱法(OES)监测并诊断了氩等离子体的演化过程.基于费米-狄拉克模型计算了电子温度,用连续谱绝对强度法计算了电子密度.结果表明,电子温度随着低频功率的增大而升高,随着高频功率的增大而降低;电子温度随气压的升高而降低;电子密度随高频功率和低频功率的增大而增大;电子密度随气压的增大呈现出先增大后减小的趋势并且在60mTorr附近出现峰值.  相似文献   

3.
设计了一种闭式等离子体发生装置,采用射频电感耦合方式,以氩气为工作气体,在封闭式腔体低气压环境下进行放电实验。利用发射光谱法,测量了密闭腔体侧面方向的Ar谱线数据,研究了等离子体电子激发温度和电子密度随空间位置的分布规律以及不同射频功率对电子激发温度和电子密度的影响。等离子体中电子激发温度的变化通过玻尔兹曼斜率法进行分析,电子密度的变化则通过分析Ar原子750.4nm谱线强度变化获得。实验结果表明,该发生装置能够产生均匀持续的等离子体层,等离子体中电子激发温度约为9 500K。等离子体电子密度和电子激发温度随着输入射频功率的增加而增大,但变化幅度在减弱;当足够的输入功率时,等离子体层参数随位置的变化幅度较小。  相似文献   

4.
通过光谱实验测量和PIC/MCC模拟,研究了6~50 MHz射频驱动下容性耦合氩等离子体的放电特性.固定气压为40 m Torr,气体流量为30 m L·min-1.结果表明,当频率和气压一定时,随着功率的增大,电子密度升高,电子温度降低;在气压和功率不变的情况下,随着频率的增加,电子温度升高,电子密度降低.通过模拟与实验对比发现,模拟结果与实验结果变化趋势较一致.电子能量分布函数均为双麦克斯韦分布,高能电子布居数随功率增大而减小,低能电子布居数随功率增大而增大.当功率恒定为60 W时,高能电子布居数不断增加,而低能电子布居数随频率的增加而减少,这可以解释电子温度随频率的增加而增加的原因.电场强度的时空分布表明,鞘层厚度随功率和频率的增加而减小.  相似文献   

5.
电子回旋共振放电产生的等离子体在微电子工业中材料加工、空间电推进方面有着广泛的应用。为了研究微波等离子体电子回旋共振的放电特性,使电子回旋共振放电产生的等离子体密度和能量转换效率更高,建立了微波等离子体电子回旋共振放电的1D3V模型,描述了带电粒子在外加静磁场、微波场共同作用下的微观运动。结果表明:微波频率为2.45 GHz时,随着静磁场磁感应强度的增加,平均电子能量先持续增大达到峰值,随后又不断地减小,且在0.087 5 T时电子加速效果最明显,结果符合电子的回旋频率公式,验证了该模型的正确性;共振区域内,发现在0.087 5 T磁感应强度下,微波频率为2.45 GHz下拟合的电子速度分布才与微波电场分布趋势相似,说明微波电场推动了电子运动。这为进一步研究微波等离子体放电的粒子模拟-蒙特卡罗碰撞模拟奠定了基础,也为进一步研究微波等离子体源中粒子产生效率及微波等离子体源的物理性质提供了重要参考。  相似文献   

6.
为了明晰小功率霍尔推力器放电特性,为后续工程应用及优化提供帮助,本文基于兰州空间技术物理研究所研制的60 mm口径小功率霍尔推力器LHT-60,建立了二维轴对称模型,利用流体方法对推力器放电室内等离子体放电特性进行了数值模拟,获得了推力器启动过程中的等离子体分布变化,并模拟推力器额定工况稳态下的等离子体、电子温度以及空间电势等关键参数。额定工况下计算推力和阳极比冲分别为21.18 mN、1257 s。同时,为验证推力器宽功率范围工作能力,在阳极流率1.1 mg/s~1.7 mg/s,阳极电压280 V~350 V条件下开展了试验,并与数值模拟结果对比分析,误差在10%左右。  相似文献   

7.
电子约束效率为反映环尖型离子推力器放电性能的重要参数之一,一般采用原初电子的平均约束长度来表征。对于离子推力器,放电室长径比与磁体间距会影响磁场分布,进而影响电子约束效率。放电室长径比与磁体间距的最佳状况是原初电子在放电室中保持尽量长的时间。以二维轴对称的离子推力器放电室为几何模型,发展了计算原初电子运动情况的代码。通过求解Maxwell方程和电子运动方程得到磁场和电子的运动轨迹,从而得到原初电子的平均约束长度。对放电室长径比与磁体间距对原初电子约束性能的影响进行了参数化研究,总结了只考虑原初电子约束时放电室长径比与磁体间距的选取原则。  相似文献   

8.
采用Langmuir静电单探针和双探针诊断技术对微波电子回旋共振(ECR)装置产生的低温低气压氮气等离子体进行诊断.测量了等离子体密度随微波功率,轴向距离,径向距离的变化关系以及电子温度随轴向距离的变化关系.采用3种不同理论计算等离子体密度;分别采用单探针与双探针测量电子温度.结果表明,由饱和电子电流计算得到的电子密度与由受限轨道理论计算得到的电子密度相一致,约为1×1010/cm3,而由饱和离子电流计算得到的电子密度在2×1010/cm3左右;由单探针测量的轴向电子温度最高可达7 e V,而双探针的测量值最大仅为4.5 e V.越靠近离子源处,这一差异性越明显.然后引入Langmuir受限轨道理论对这些差异现象进行分析,提出电流分离的思想,将电子电流与离子电流分离,证明了受限轨道理论在ECR等离子体中的适用性.通过利用电流分离思想除去离子电流的方法得到负偏压部分的电子电流,解决了使用单探针测量电子温度时直线部分不明显的问题.  相似文献   

9.
为了分析射频离子推力器束流特性,基于二维流体模型对自研的11 cm射频离子推力器开展放电室等离子体数值模拟,获得给定电气参数下离子密度、电子温度等关键参数的分布特性;研究了等离子体参数和束流大小与射频功率间的函数关系;以等离子体参数和栅极参数为输入,基于离子光学系统模型获得不同工况下的单孔离子引出轨迹.研究结果显示:离子密度和电子温度分别沿放电室径向逐渐减小和增大,有利于获得更好的束流均匀性及更大的束流;束流大小与射频功率呈线性正相关关系,有利于实现束流连续精确可调;屏栅上游鞘层的形成与离子密度、离子种类、栅极电压组合相关,综合考虑以上因素获得最佳束流聚焦和引出特性.  相似文献   

10.
电子约束效率为反映环尖型离子推力器放电性能的重要参数之一,一般采用原初电子的平均约束长度来表征。对于离子推力器,放电室长径比与磁体间距会影响磁场分布,进而影响电子约束效率。放电室长径比与磁体间距的最佳状况是原初电子在放电室中保持尽量长的时间。以二维轴对称的离子推力器放电室为几何模型,发展了计算原初电子运动情况的代码。通过求解Maxwell方程和电子运动方程得到磁场和电子的运动轨迹,从而得到原初电子的平均约束长度。对放电室长径比与磁体间距对原初电子约束性能的影响进行了参数化研究,总结了只考虑原初电子约束时放电室长径比与磁体间距的选取原则。  相似文献   

11.
Xue-Jian  福宝 《科学技术与工程》2024,24(16):6963-6972
地膜的使用为农业发展带来了极大的便利,但大量的残膜同时也造成了极为严重的白色污染,而目前针对残膜的降解处理研究又极为缺乏。低温等离子体降解技术作为一种高效、绿色的污染物处理方法,可以通过在反应空间生成大量高能电子和活性物质对污染物进行降解。本文首先采用高频交流针板电晕放电结构,针对电极结构进行优化设计,提高反应空间内的电场强度的电子密度。然后通过电晕等离子体降解技术对地膜进行处理,最后对比了不同的放电功率、空气湿度、针膜间距、放电间距对地膜降解的影响效果。研究结果表明,针尖的形状和针针之间的距离会对电子密度和电场强度造成不同程度的影响,当针尖斜率为3.33,针针间距为12mm时,电子密度和电场强度最大,分别为1.55×1013m-3和1.2×106V/m;放电功率的增大会导致空间内能量密度的提高,从而提高空间内高能电子和活性物质的产生效率,提高地膜的降解效率,当输入功率为64W时降解效率达到0.96%,但能量效率会随着输入功率的升高先增大后减小,当输入功率为56W达到最佳能量效率为34.29(μg/w·h);空气湿度的增加不仅会导致放电形态发生变化出现稳定的微放电,也会提升活性物质的产生效率,当空气湿度达到70%RH时,地膜降解效率提升1.04倍;地膜与针尖的之间的距离也会导致稳定的微放电产生,将降解效率由0.43%提升至1.02%;此外,针板电极的间距也会对降解效率产生影响,当放电间距为15mm时可以达到最佳的等离子体的辐射范围和辐射强度,使降解效率和能量效率均达到最大,与仿真条件一致,分别为2.3%和68.18(μg/w·h)。  相似文献   

12.
大气压氩气微波等离子体参数的光谱诊断   总被引:1,自引:0,他引:1  
为了深入了解大气压下氩气微波等离子射流内部电子的状态,利用发射光谱法对大气压下氩气微波等离子体进行了诊断.以玻尔兹曼斜率法对等离子体中电子激发温度进行测算,以斯塔克展宽计算电子密度.研究了等离子体射流方向上不同区域电子激发温度和电子密度的分布规律及微波功率对电子激发温度和电子密度的影响.结果表明,在本实验条件下等离子体射流电子激发温度为4 000~6 000 K,电子数量密度为(2.4~2.8)×1018 cm-3,电子激发温度和电子密度的最大值均出现在距波导管底边20 mm处,并以此处为中心,分别向上下2个方向呈现不完全对称的递减分布,微波功率增加影响等离子体电子密度和电子温度的交替上升.  相似文献   

13.
分别通过Langmuir静电探针测量和数值模拟方法研究了等离子体增强化学气相沉积系统中氩等离子体中电子密度和电子平均能量的径向分布规律.实验结果表明:从放电中心到电极边缘方向,电子密度和电子平均能量呈逐渐增大的趋势.数值模拟结果和Langmuir静电探针测量结果符合得较好.  相似文献   

14.
研究了HT-7托卡马克装置欧姆放电情况下电子热扩散系数χe的空间分布以及它与等离子体参数如等离子体中心弦平均密度、等离子体电流的关系。χe沿等离子体小半径的分布是逐渐增大,中心最低χe在等离体1/2小半径处的数值随等离子体的中心弦平均密度增大而降低,随等离子体电流的增大而增大。且硼化后的值比硅化后的值稍小一些。χe比INTOR定标小很多,但与欧姆放电情况下的Merezhkin定标以及Coppi-Mazzucato定标数值差不多。  相似文献   

15.
建立了一个适用于低气压下双频容性耦合氩(Ar)等离子体的碰撞辐射模型,在试验仪器和条件不变的情况下,发现电源频率对该模型的影响不大。利用碰撞辐射模型结合发射光谱(OES),测试了双频容性耦合Ar等离子体在高低频放电中电子温度(T_e)和电子密度(n_e)随功率的变化情况。结果表明:n_e随功率的增加呈递增趋势,但高频放电中增长的幅度更大,这说明在双频容性耦合等离子体放电中,虽然高频和低频功率并未完全解耦,但高频功率仍在控制等离子体的密度方面占主导作用;高频和低频功率对T_e的影响相差不大。  相似文献   

16.
为了研究在氩气不同气压下对介质阻挡放电(DBD)的电气参数和放电特性的影响,利用有限元分析建立大气压下氩气中的二维轴对称板-板电极放电等离子体模型,并对放电过程进行求解,通过仿真得到放电过程中的电势、电子温度、电子密度及氩离子数密度随着空间位置变化的波形。仿真结果表明,介质阻挡放电的特性变化与放电环境气压变化有关,随着气压的增加,气压在一定范围内,电势、电子温度、电子密度都下降,且电势空间分布的变化与电子密度相关。  相似文献   

17.
为了深刻理解微波电子回旋共振(ECR)等离子体的物理机制、瞬态过程以及空间分布特性,首先利用光栅光谱仪对ECR氮等离子体发射光谱进行了研究,然后利用朗缪尔双探针测量了装置反应室内等离子体密度的空间分布,并分析了放电气压对等离子体空间分布的影响,结果表明: ECR氮等离子体中主要发生的是碰撞激发、碰撞电离,碰撞离解等微观过程,且等离子体的主要成分是激发态的 ;受磁场梯度影响的反应室上游区,等离子体分布不均匀,受等离子体密度梯度影响的下游区,等离子体则具有良好的均匀性;对于特定的微波功率(PW=400W),放电气压存在一个最佳值(p=0.07Pa).  相似文献   

18.
记录并标识了氩气微波电子回旋共振(ECR)等离子体在可见光区的发射光谱谱线;测定了氩原子谱线和离子谱线强度随微波功率和氩气气压的变化关系。指出随着微波功率的增加,原子谱线和离子谱线强度均增加并且呈现饱和趋势。  相似文献   

19.
采用等离子体平板模型和三维天线模型研究JET装置中离子回旋频段的天线与等离子体的耦合过程, 在离子回旋波被等离子体全部吸收的假设条件下, 通过数值求解等离子体中的快磁声波方程,得到天线耦合到等离子体的总功率随天线到外金属壁的距离的增加而增加.  相似文献   

20.
铜膜制备过程中辉光等离子体的双探针诊断   总被引:1,自引:0,他引:1  
采用Langmuir双探针技术对氩气环境下射频磁控溅射铜薄膜过程中产生的辉光等离子体进行了实时诊断.结果表明,在一定的射频功率下,电子温度随气压的增大呈指数衰减的趋势变化;在一定的反应气压下,电子温度和电子密度随射频功率的增大均呈线性增加的趋势.电子的运动速度数量级为106 m/s.比离子的运动速度大3个数量级.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号