共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
为了提高视频中行人检测的准确度,提出了一种基于递归卷积神经网络的行人检测方法.该方法利用递归卷积神经网络融合视频中连续图像的上下文信息,以实现准确的行人检测.首先,利用卷积神经网络提取连续图像的多个特征图组;然后,根据先后次序,将多个特征图输入到递归卷积神经网络中,形成一张关于行人位置的掩码图;最后,通过在掩码图上预测... 相似文献
3.
针对将YOLOv3通用目标检测算法应用于行人检测时的检测精度低、定位不准确的问题,提出了一种基于YOLOv3的适用于行人体态特征的目标检测算法.在预处理生成先验框部分,将MSCOCO通用数据集改进为MSCOCO中的person子集来生成仅针对行人体态特征的锚框,并将生成先验框的K-means算法改进为K-means++... 相似文献
4.
针对行人检测算法未能充分利用行人的特征信息,导致对行人的检测效果不佳问题,本文对无锚框的行人检测网络模型CSP进行了相应改进,提出了一种基于卷积神经网络的行人检测算法.首先,将原主干网络由ResNet-50加深为ResNet-101,然后引入卷积块注意力模块(CBAM)来提高原网络对小尺度行人中心点的特征表达,加入基于... 相似文献
5.
近年来,大多数火灾自动报警系统都是通过检测感温、感烟和感光等传感器的方法进行检测,只能针对单一特征信息进行判断识别,受到外界空间、环境或人为因素的影响.卷积神经网络(CNN)以其高准确率的识别率在广泛应用成为一个活跃的研究课题.然而如何可靠、有效地解决火焰检测问题仍然是实践中一个具有挑战性的问题.本文提出了一种新的基于... 相似文献
6.
作为深度学习的一种有效算法,深度卷积网络已成功应用在处理图像、视频和音频等领域.通过建立一卷积神经网络模型并应用于网络入侵检测,选取的卷积核与数据进行卷积操作提取特征的局部相关性从而提高特征提取的准确度.采集到的网络数据通过多层"卷积层-下采样层"的处理对网络中正常行为和异常行为的特征进行深度刻画,最后通过多层感知机进行正确分类.KDD 99数据集上的实验表明,文中提出的卷积神经网络模型与经典BP神经网络、SVM算法等相比,有效提高了入侵检测识别的分类准确性. 相似文献
7.
针对已提出的很多烟雾检测方法中都是基于手工制作的特征或者使用原始图片直接作为神经网络的输入,减少了深度学习的鲁棒性。为解决这些问题,提出一种基于卷积神经网络(convolutional neural network,CNN)的烟雾检测方法。使用图片归一化方式消除光照的影响,利用烟雾颜色检测烟雾候选区域,CNN自动提取烟雾候选区域的特征,进行烟雾识别,根据分类结果得到报警信号。针对烟雾产生初期烟雾区域相对较小的问题,利用扩大候选区域的策略提高烟雾检测的及时性。由于训练数据少或不平衡引起的过度拟合,使用数据增强技术从原始数据集生成更多训练样本解决该问题。实验结果表明,该方法能有效地检测烟雾,且具有更高的准确率和更好的鲁棒性。 相似文献
8.
为解决EEG自动检测的错误率非常高的问题,提出了一种基于深层卷积神经网络(CNN)对脑电图进行异常检测的方法:首先,对多个异构数据源按标准进行重构和预处理,生成了有118 716个样本的训练集和有12 022个样本的测试集;然后,构建有快捷连接的深层CNN模型,以自动化学习ECG特征并进行分类识别;接着,将模型在训练集上进行试验与调参,保存了性能最好的模型参数;最后,在测试集上进行预测.预测结果显示该模型达到了94.33%的分类准确率.通过所提方法对脑电信号进行处理与分析,能够自动提取EEG特征并进行异常识别,从而达到快速检测与辅助诊疗的目的. 相似文献
9.
在无人机巡检图像中,检测出绝缘子是实现输电线路状态分析的关键.本研究采用轻量级卷积神经网络代替传统的人工特征提取器,获取输入图像的深层特征;利用深度学习目标检测网络对所提取特征进行处理和训练学习,实现多尺度、多种类的绝缘子目标检测.实验结果表明:该方法可以准确快速地识别出以山林背景为主的瓷质和复合两类绝缘子,其检测精度... 相似文献
10.
《西北大学学报(自然科学版)》2017,(4):505-512
为解决酿酒葡萄生长状态的在线自动监测问题,该文提出了一种基于卷积神经网络的葡萄叶片检测算法。通过多层卷积的方式产生特征图,使原图像的特征增强并且降低了图像噪声,在最后一层特征图中,通过使用RPN(Region proposal network)生成建议区域,然后进行池化操作,最后进行边框回归与分类。该算法在有叶片遮挡、光照阴影、病害叶片等复杂背景因素下对葡萄叶片有良好的检测效果。试验表明,该算法在复杂背景下对葡萄叶片的检测率为87.2%,误检率为7.2%。 相似文献
11.
针对单特征辨识度较低问题,基于多特征的AdaBoost行人检测算法,提出一种融合灰度和轮廓信息的新的多特征综合表示方法.该方法通过统计样本的权重直方图建立分类模型,并用多个直方图的乘积表示样本在多特征下对应的联合概率分布,从而基于多特征联合概率更精准地描述行人,提高行人检测的鲁棒性.实验结果表明,改进后的基于多特征行人检测算法提高了行人检测精度、降低了误检率,目标识别的置信度明显提高,在多变的自然背景下可以取得较好的效果. 相似文献
12.
针对行人检测中复杂环境,提出一种改进Faster R-CNN的行人检测算法,使用深度卷积网络从图片中提取适合检测目标的特征。基于Faster R-CNN算法,以Soft-NMS算法代替传统NMS算法,加强Faster R-CNN算法对重叠区域的识别能力。同时,算法通过"Hot Anchors"代替均匀采样的锚点避免大量额外计算,提高检测效率。最后,将21分类问题的Faster R-CNN框架,修改成适用于行人检测的2分类检测框架。实验结果表明:改进Faster R-CNN的行人检测算法在VOC 2007行人数据集,检测效率和准确率分别提升33%、2.6%。 相似文献
13.
受韦伯局部描述子和局部二值模式(LBP)特征的启发,针对Haar特征维度高、冗余度大等缺点,提出了一种基于显著性的二值化Haar特征(SLBH).虽然利用整体行人特征能取得较好的检测效果,但其检测性能在遮挡场景中会迅速下降.为提高整体特征对部分遮挡的鲁棒性,文中提出了一种结合SLBH特征多部件验证的双层行人检测算法.该算法结合了整体特征与局部特征的优点,增强了算法对部分遮挡的鲁棒性.在INRIA行人检测库上的实验结果表明,文中提出的算法对噪声和部分遮挡有较好的鲁棒性. 相似文献
14.
为提高实际应用场景中行人的检测精度,提出使用高分辨率特征提取网络HRNet(High-Resolution Representation Network)并引入Guided Anchoring机制对RetinaNet算法进行改进,维持了特征图在特征提取过程中的高分辨率信息,同时使网络中的锚框自适应生成,提高了算法的检测精度。结果表明:该改进算法在Caltech行人数据集上取得了0.905的平均精度均值(mean average precision,简称mAP),相比于标准的RetinaNet算法提高了6.0%,在每帧图像尺寸为1280×720像素的视频上检测速度达到了19FPS(每秒检测帧数) ,达到了检测精度与检测速度的均衡。 相似文献
15.
行人检测是计算机视觉领域中的研究热点,其实质是一个二分类问题.目前基于统计的行人检测技术已取得了一定进展,但大都需要大量的训练数据.针对这一问题,提出了一种基于迁移学习的半监督行人分类方法:首先基于稀疏编码,从任意的未标记样本中,学习到一个紧凑、有效的特征表示;然后通过迁移学习,将学习到的特征表示方法迁移到行人分类中.在MIT行人数据库上的实验结果表明:该方法能有效地刻画出行人的特征,提高行人分类的性能,在标记样本少的情况下仍具有良好的分类效果,因此可应用于行人检测中. 相似文献
16.
针对行人检测易受物体遮挡以及光照变化干扰的问题,提出一种融合颜色与深度信息的多通道特征行人检测方法.首先,颜色采用Chn Ftrs方法中的通道,深度在其基础上引入法向量方向通道,并用快速图像特征金字塔来加速颜色和深度的通道特征的计算.其次,通道特征作为级联Ada Boost的候选特征点集输入,分别训练得到颜色和深度分类器,按一定比例权重融合颜色和深度信息进行检测.实验表明,该方法提高了检测精度,对光照变化、物体遮挡具有较好的鲁棒性. 相似文献
17.
18.
Detection of pedestrians in images and video sequences is important for many applications but is very challenging due to the various silhouettes of pedestrians and partial occlusions. This paper describes a two-stage robust pedestrian detection approach. The first stage uses a full body detector applied to a single image to generate pedestrian candidates. In the second stage, each pedestrian candidate is verified with a detector ensemble consisting of part detectors. The full body detector is trained based on improved shapelet features, while the part detectors make use of Haar-like wavelets as features. All the detectors are trained by a boosting method. The responses of the part detectors are then combined using a detector ensemble. The verification process is formulated as a combinatorial optimization problem with a genetic algorithm for optimization. Then, the detection results are regarded as equivalent classes so that multiple detections of the same pedestrian are quickly merged together. Tests show that this approach has a detection rate of over 95% for 0.1% FPPW on the INRIA dataset, which is significantly better than that of the original shapelet feature based approach and the existing detector ensemble approach. This approach can robustly detect pedestrians in different situations. 相似文献
19.
20.
针对TLD目标检测时需全局穷举搜索耗时较高的问题,提出一种基于行人运动特性的区域优化算法。该算法可有效预测行人在图像中的可能区域,从而减小检测计算复杂度,提高算法效率。经仿真分析表明,该算法在原有目标检测性能不变的情况下,检测耗时较原算法平均降低81.54 %,跟踪速率平均提升4倍,跟踪实时性明显提高。 相似文献