首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以LiOH·H_2O、Si(OC_2H_5)_4和Eu(NO_3)_3·6 H_2O为主要原料,采用简单的机械球磨法,在室温下合成了Li_2SiO_3:Eu~(3+)荧光粉前驱体,再经高温灼烧,得到一系列Li_2 SiO_3:x%Eu~(3+)红色荧光粉。研究了灼烧温度、保温时间及Eu~(3+)的物质的量浓度对产物的结构和发光性能的影响。结果表明,当x在1.5~15这个较宽的范围内,随着Eu~(3+)物质的量的增加,Li_2SiO_3:x%Eu~(3+)荧光粉的物相组成保持不变,且直到x值达到12之后,才出现了浓度淬灭现象;当灼烧温度为1173K、保温时间为2h时,荧光材料的发光强度达到最大值。在467 nm激发下,基于Eu~(3+)的~5D_0→~7F_2(615 nm)跃迁,Li_2SiO_3:Eu~(3+)荧光粉发射出强烈的红光。  相似文献   

2.
以体积比1:1的乙醇/水为溶剂,以聚乙烯吡咯烷酮(PVP)为表面活性剂,通过简单的一步溶剂热法在β-NaYF_4:Yb~(3+),Er~(3+)表面包裹一层TiO_2,构筑β-NaYF_4:Yb~(3+),Er_~(3+)@TiO_2核壳结构上转换发光材料。采用X线衍射仪(XRD)、场发射扫描电镜(FESEM)、傅里叶变换红外光谱仪(FT-IR)、荧光光谱仪等测试手段对所制备样品的物相结构、形貌特征和发光性质进行研究。结果表明:微米β-NaYF_4:Yb~(3+),Er~(3+)晶粒表面成功包裹了一层TiO_2,构筑了核壳结构。纯β-NaYF_4:Yb~(3+),Er~(3+)在热处理后上转换发光强度显著降低,而核壳结构材料经过600℃的高温热处理60 min,上转换发光强度显著提高,这主要得益于内核结晶质量的提高且表面缺陷浓度的降低。  相似文献   

3.
采用熔盐法合成了NaCa_2Mg_2(VO_4)_3:Eu~(3+)白色荧光粉,通过X射线粉末衍射仪(XRD)、场发射扫描电子显微镜(FE-SEM)和荧光光谱仪(FL)对样品的物相、形貌和发光性能进行了分析表征,结果表明:所得NaCa_2Mg_2(VO_4)_3:Eu~(3+)样品为纳米棒状,平均直径约为50nm,平均长度约为100nm;在279nm紫外光激发下,NaCa_(2-x)Mg_2(VO_4)_3:xEu~(3+)的发射光谱由一个宽带谱(400~580nm)和若干个尖锐特征峰组成,宽带峰属于VO_4~(3-)的~3T_2→~1A_1辐射跃迁,特征峰分别位于592 nm、612 nm、655 nm和710 nm处,属于Eu~(3+)的~5D_0→~7FJ跃迁,其中,对应于~5D_0→~7F_2跃迁的612nm发射峰强度最高。样品的最佳合成温度为600℃。当Eu~(3+)掺杂量为x=0.100时,NaCa_(1.9)Mg_2(VO_4)_3:0.1Eu~(3+)的色坐标(0.3242,0.3268)接近标准白光色坐标(0.333,0.333)。  相似文献   

4.
本文以钛酸四丁酯(Ti(OBu)4)为钛源合成了SiO2@TiO2:Eu3+微米核壳微球,采用XRD、EDX、TG-DTA、SEM、TEM和PL等测试手段对其形貌、晶体结构和发光性质进行了表征,对SiO2@TiO2:Eu3+微米核壳微球形成过程进行了深入的探讨。结果显示,在溶剂热条件下,TiO2:Eu3+纳米粒子层成功的包覆在了SiO2球的表面,并且在500℃煅烧的条件下由无定型状态转变成了锐钛矿晶相。此外,在紫外光激发下,SiO2@TiO2:Eu3+具有非常强的红光(Eu3+, 5D0 7F2)发射。  相似文献   

5.
设计并制备了一种新的亚微米级磁性复合微球,检测了该微球对超声的吸收作用。采用水热法制备亚微米级Fe_3O_4模板微球,通过改进的St9ber方法对磁性Fe_3O_4粒子进行SiO_2包覆,并用MPS化学试剂修饰所得复合微球,通过聚合反应得到PNIPAM@SiO_2@Fe_3O_4磁性复合材料。对所获亚微米级磁性复合材料的结构和性能进行了表征,检测了该复合材料的超声波性能。结果表明:该亚微米级复合材料呈现球状核壳结构,具有良好的超顺磁性,且对超声波具有较好的吸收作用,因此该复合材料可以应用于吸波、降噪、减震等领域。  相似文献   

6.
首先用微乳法合成了纳米SiO_2和纳米γ-Fe_2O_3,然后利用传统的St9ber方法合成出核壳结构的γ-Fe_2O_3@SiO_2,并利用X射线衍射仪(XRD)、透射电子显微镜(TEM)、振动样品磁强计(VSM)对其进行了表征。采用双硫腙光度法在551nm处,测定了Hg~(2+)在纳米SiO_2、纳米γ-Fe_2O_3和γ-Fe_2O_3@SiO_2表面的吸附等温线,发现三者的吸附等温线类型依次为Ⅱ、Ⅲ和Ⅰ型,等温线类型与纳米材料的分散性、表面硅羟基、离子空位以及磁性有关。利用双吸附等温线法、准一级和准二级动力学模型对吸附数据进行拟合得出:纳米SiO_2和γ-Fe_2O_3@SiO_2对Hg~(2+)的吸附符合Langmuir等温式,而纳米γ-Fe_2O_3对Hg~(2+)的吸附符合Freundlich等温式。三者对Hg~(2+)的去除率均与pH有关,均属于准二级动力学模型。  相似文献   

7.
利用脉冲激光沉积方法,不同沉积条件下在SiO_2/Si、蓝宝石单晶和石英玻璃3种衬底上制备了c轴择优取向的Eu~(3+)掺杂ZnO(Eu:ZnO)薄膜.以SiO_2/Si为衬底,具体研究了衬底温度、氧压、激光重复频率及沉积时间对Eu:ZnO薄膜结晶质量和荧光性能的影响.发现沉积条件相同时,在蓝宝石和SiO_2/Si衬底上制备的薄膜结晶质量好于石英玻璃衬底上的.利用273nm波长的氙灯泵浦,室温下所有样品的光致荧光谱中都测得了稀土Eu~(3+)在616nm附近的特征发光峰,而且在蓝宝石衬底上生长的Eu:ZnO薄膜的荧光强度最强.  相似文献   

8.
通过LSS(Liquid-Solid-Solution)方法制备了不同Eu~(3+)掺杂量的CaF_2纳米发光材料,利用X射线衍射仪(XRD)、透射电子显微镜(TEM)和光致发光光谱(PL)对制备样品的晶体结构、表面形貌、晶粒尺寸进行了表征,并进一步研究了Eu~(3+)掺杂量对样品发光性能的影响.结果表明:Eu~(3+)掺杂的CaF_2纳米材料具有良好的红光发光特性,Eu~(3+)最优掺杂量为15%,此时样品具有最大的发光强度;Eu~(3+)最大掺杂量为20%,样品的发光强度在这一掺杂量下反而减弱,这说明Eu~(3+)掺杂量的增加导致样品发生了浓度猝灭.  相似文献   

9.
采用模板法和逐层沉积法制备了Fe_3O_4@SiO_2@TiO_2-Ag核壳微米结构,并采用XRD、SEM、TEM、VSM等表征手段对其形貌、组成以及磁学性能进行了表征和分析.光催化测试表明,由于Ag纳米粒子的负载,该核壳结构的光催化性能优异.  相似文献   

10.
采用高温固相法,在常压氮气条件下,可控的制备出纯相的Sr_2Si_5N_8:Eu~(2+)氮化物红粉。进一步通过EuB_6、SiB_6、SiB_4等不同硼源形式引入硼离子,研究了部分B~(3-)替代N~(3-)对Sr_2Si_5N_8:Eu~(2+)晶体结构和发光性能的影响。结果表明:当以EuB_6+EuN的形式引入硼离子时,25℃下Sr_2Si_5N_(8-x)B_x:Eu~(2+)(x=0.3)的发光强度比Sr_2Si_5N_8:Eu~(2+)提高了5.21%; 150℃下,相比不含硼的荧光粉发光强度增强了3.10%,荧光粉的热稳定性明显改善。热稳定性的改善归因于B比N具有更强的共价性能,使得Eu-B比Eu-N具有更强的键接强度,引入适量硼离子能够改善发光中心Eu~(2+)周围的晶体场环境,提高晶体的刚性。  相似文献   

11.
采用凝胶-燃烧法在活性炭弱还原气氛下成功合成了新型橙红色发光材料Sr_2MgSi_3O_9:Eu~(3+).用X射线粉末衍射仪(XRD)、扫描电镜(SEM)、荧光分光光度计等对合成产物进行了分析和表征.结果表明:此发光材料与Sr_2MgSi_2O_7具有相似的晶体结构,同属四方晶系.样品的一次颗粒近似球形,粒径在100 nm左右.样品Sr_2MgSi_3O_9:Eu~(3+)的激发光谱在220~300 nm内出现一宽带吸收,归属于Eu~(3+)-O~(2-)之间的电荷迁移带,300 nm以后出现的锐线峰为Eu~(3+)的f→f跃迁吸收峰,其最强锐线峰位于400 nm,对应于Eu~(3+)的基态到~5L_6激发态跃迁吸收,因而,可以被InGaN管芯产生的紫外辐射有效激发.发射光谱由2个强发射峰组成,位于592 nm和618 nm处,分别属于典型的Eu~(3+)的~5D_0→~7F_1和~5D_0→~7F_2跃迁.此外,研究还发现共掺杂适量Ti使得发光颜色由橙红色向红色转变,发光强度明显增强.  相似文献   

12.
为研发白光LED(light-emitting diodes,发光二极管)用红色荧光粉,采用高温固相法制备了可被近紫外光有效激发的Sr_2SnO_4∶Eu~(3+)荧光粉,对样品分别进行了X-射线衍射(XRD)、扫描电镜(SEM)和荧光光谱(PL)的测定。结果表明:当烧结温度为1 300℃时,可以得到Sr_2Sn O_4的纯相,所制备的Sr_(1.90)SnO_4∶Eu_(0.10)~(3+)荧光粉颗粒的粒径大小约为1~2μm,颗粒形状较规则;Sr_2SnO_4:Eu~(3+)荧光粉能够被392 nm的紫外光有效激发,在611 nm处发出较强的红色荧光,对应于Eu~(3+)的5D0→7F2电偶极跃迁。392 nm处的吸收峰与目前应用的紫外光LED芯片相匹配,表明Sr_2Sn O_4∶Eu~(3+)红色荧光材料在白光LED领域具有潜在的应用前景。  相似文献   

13.
利用改良的Stber法合成CdTe@SiO2微球, 直接沉淀法制备CdTe@SiO2@GdF3核壳结构的荧光/磁共振成像双功能微球, 并 用透射电镜(TEM)、 能量散射X射线光谱(EDXA)、 磁共振成像(MRI)、 Fourier变换红外光谱(FT-IR)和荧光光谱等方法对其结构、 磁共振成像和发光性能进行表征. 实验结果表明: 合成的微球具有明显的球形核壳结构, 大量的GdF3以小颗粒形态均匀分散于SiO2表层, 颗粒尺寸为5~8 nm; 在CdTe@SiO2@GdF3微球表面可检测到Si,O和Gd元素, 即Gd已掺杂到CdTe@SiO2材料中; 相对于CdTe量子点, CdTe@SiO2@GdF3微球荧光发射光谱发生红移, 但仍具有良好的荧光性能; CdTe@SiO2@GdF3微球的弛豫参数  相似文献   

14.
通过牺牲微米级PS模板原位合成方法制备微米级单分散中空SiO_2微球,着重研究反应温度(50,70℃)、TEOS用量(2,3,4 g)、氨水用量(1,2,3 mL)与MTC用量(0.2,0.4 g)等参数对中空微球的影响,获得微米级(1~5μm)、结构(孔径、壁厚等)可控的单分散中空SiO_2微球的最佳制备工艺,通过扫描电镜分析(SEM)、透射电镜分析(TEM)、红外光谱分析(FT-IR)、热失重分析(TGA)、氮吸附(BET)等测试手段表征了微球性能。  相似文献   

15.
通过种子乳液聚合法制备得到亲水核与核壳结构微球,采用酸碱溶胀法处理核壳微球,制备了微米级中空微球。扫描电子显微镜、透射电子显微镜等测试分析表明,单分散性的亲水核平均直径约465 nm;单分散的核壳微球表面略显粗糙,平均直径约560 nm,疏水壳层厚度约100 nm;微米级中空微球的直径约1.20μm,中空度为21.6%,其单分散性与球形度良好。在亲水核聚合过程中,当m(MMA)/m(MAA)=1.771时,乳液反应体系稳定,得到亲水核微球的单分散性最好。  相似文献   

16.
以介孔SiO_2微球作为载体,通过调节APTES的加入量,进行表面氨基功能化修饰,优化寻找氨基(—NH_2)功能化介孔SiO_2微球(NH_2@MSM)的最佳制备条件.结果表明:加入APTES的量为V_(APTES)=1.0 mL(NH_2@MSM_(1.0))时,氨基的修饰量达到最大.以复合材料NH_2@MSM_(1.0)为载体吸附重金属离子(Cd~(2+)、Pb~(2+)、Cu~(2+)),4次循环吸附效率仍分别为84.0%,75.0%,89.0%,表明功能化介孔SiO_2微球是一种良好的循环吸附载体.  相似文献   

17.
Sr_3Y_2(BO_3)_4:Eu~(3+)红色荧光粉在白光LED应用上有很大潜能,以高温固相法在1 000℃下焙烧5h可以制备出发光性能最佳的Sr_3Y_(2-x)(BO_3)_4:xEu~(3+)红色荧光粉.通过X-ray衍射仪(XRD)和荧光光谱等测试手段对Sr_3Y_(2-x)(BO_3)_4:xEu~(3+)荧光粉的制备条件、结构及发光性能进行表征.结果表明,适量掺杂Eu~(3+)并不能使Sr_3Y_2(BO_3)_4的结构发生改变.以394nm的近紫外光激发Sr_3Y_(2-x)(BO_3)_4:xEu~(3+)荧光粉具有较好的发光性能,最强发射峰为Eu~(3+)离子的5D0→2F2电偶极跃迁,波长为618nm的红光.当Eu~(3+)离子的掺杂量为15%(mol)时,发光强度最大.  相似文献   

18.
利用高温固相法制备了Yb~(2+)掺杂Ba Mg Si O4:Eu~(2+)荧光粉,通过XRD和光致发光光谱分别对其物相和发光性能进行表征.结果表明:Ba Mg Si O4:Eu~(2+),Yb~(2+)为单一基质的荧光粉,激发光谱主要由220~400 nm和400~451 nm两个宽峰组成;在373 nm激发下,样品Ba Mg Si O4:Eu~(2+),Yb~(2+)表现出两个宽带发射,分别位于440 nm和500 nm处,属于Eu~(2+)的特征跃迁4f65d→4f7;Yb~(2+)掺杂使样品的主发射峰由440 nm转变为500 nm,发光强度随着Yb~(2+)掺杂量的增加先增强后减弱,而440 nm发射强度逐渐下降;Yb~(2+)取代Ba~(2+)的最佳量为0.02 mol,其色坐标为(0.1433,0.3344).所得样品可应用于UV-白光LED领域中.  相似文献   

19.
CaAl_2_O4:Eu~(3+)的制备、结构及光致发光特性   总被引:1,自引:1,他引:0  
采用自蔓延燃烧合成技术成功制备了纯净的单相CaAl_2O_4:Eu~(3+)红色荧光体,并采用XRD分析及红外光谱对其进行了表征.结果表明:晶胞属立方晶系,P21/n空间群;晶胞参数a=0.870 0 nm,b=0.810 2 nm,c=1.522 2 nm,β=90.148 5°,Z=12.激发光谱在260~290 nm处带状强激发峰为O~(2-)→Eu~(3+)的电荷迁移带(CTB)跃迁吸收,322,365,387和397 nm处的激发峰分别来自~7F_0→~5H_3,~7F_0→~5L_8,~7F_0→~5G_2,~7F_0→~5L_6的跃迁吸收.发射光谱在579,589,617,655和701 nm处的发射峰分别归属于Eu~(3+)的~5D_0→~7F_J(J=0,1,2,3,4)跃迁发射.SEM显示样品表面光滑、结晶好.  相似文献   

20.
采用高温固相法合成了La_2Na_2Sr_6(PO_4)_6Br_2和Y_2Na_2Ca_6(PO_4)_6F_2。X射线衍射分析证明它们都为单一物相。用Sr_(10)(PO_4)_6Br_2和Ca_(10)(PO_4)_6F_2同晶指标化法进行指标化,结果表明:它们都属六方晶系的磷灰石结构,空间群为P6_3/m。计算了它们的晶胞参数。以Eu~(3+)做结构探针,研究了Eu~(3+)所处晶格的点对称性。研究表明:在La_2Na_2Sr_6(PO_4)_6Br_2中Eu~(3+)占据4f格位,为C_3点群,而在Y_2Na_2Ca_6(PO_4)_6F_2中Eu~(3+)处于6h格位,为C_6点群。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号