首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用通电加热方式研究了PAN基碳纤维的红外发热特性,进一步探索了其除冰性能。结果表明随输入功率的增加,碳纤维表面的升温能力显著提升,当输入功率为23.92 w时,样品在100 s内可升至215 ℃。当输入电压低于5 V时碳纤维电阻出现先增加后减小的现象,表明了PAN基碳纤维的半导体特性,红外成像测试表明碳纤维表面温度分布均匀。融冰实验表明碳纤维样品的面积、温度、距离、融冰水等因素都对融冰速率都有影响,随着碳纤维加热片样品温度和面积的增加以及融冰水的去除冰柱融化时间不断缩减,纤维红外辐射强度随距离增加而迅速衰减。恒定温度为125℃时,5 cm × 5 cm样品最大融冰速率为0.385 g/min。恒定面积时,125 ℃时最大融冰速率相对于室温自然融化提升了115.3%。当面积温度恒定时,有无融冰水情况下,融冰速率相差43.9%。实验证明,利用碳纤维的红外辐射加热在飞机除冰方面这具有较大潜在应用价值。  相似文献   

2.
为研究碳纤维混凝土在低温下导电发热性能,测试低温下碳纤维混凝土的融雪化冰能力以及相互之间的关系,为冬季公路或机场的融雪化冰工程奠定基础。采用模拟的方法进行实验研究,分别研究了低温下碳纤维混凝土的发热规律、3 mm冰层覆盖情况下的融雪能力、外界温度与除冰时间关系、电热功率与除冰时间关系。结果表明:在-25℃情况下,2%碳纤维含量的碳纤维混凝土在36 V交流电压的作用下80 min左右温度达到0℃,且随着时间的推移,温度上升速率不断增加;在3 mm冰层覆盖下,通电80 min时冰层开始融化,120 min时冰层基本融化完,说明在"中雪"情况下,通电120 min就能保证"旧雪"完全融化完毕;随着电热功率的增加,碳纤维导电混凝土的融雪能力也不断增强,根据实验数据可以得出碳纤维导电混凝土的最经济导电功率为500~700 W/m2.低温时,不同温度情况下,随着温度的变化,融雪化冰时间也随之变化,随着温度的"上升",融雪化冰时间几乎成直线下降,外界温度越接近0℃,融雪化冰时间越短。在-5℃情况下,碳纤维混凝土温度上升到0℃只需要46 min.  相似文献   

3.
微波除冰是一种新型的道面除冰方法,具有加热速度快,不污染环境等特点,但除冰效率低限制了它的使用.在混凝土中掺加碳纤维能提高混凝土的的导电导热性能、耐磨性等,可为道面除冰提供一种新的复合材料.通过掺入不同掺量碳纤维对混凝土进行改性,研究碳纤维混凝土的微波吸热效率、除冰效果及温度空间分布.结果表明,混凝土试件中心点的温度最高,距离中心点位置越远,温度越低;随着碳纤维掺量的逐渐增加,混凝土试件发热效率逐渐增高,碳纤维掺量为2‰时,混凝土试件吸波发热效率最高,与此同时,混凝土试件表面中心点的温度会逐渐增大.  相似文献   

4.
石墨烯复合材料因其优良的导电性和高导热性,在各个领域均得到了广泛的关注。为研究石墨烯加热膜在电热除冰上的应用,通过实验比较石墨烯和电阻丝作为加热元件时的温升速率;将加热元件制备成可用于电热除冰的加热膜,在相同加热功率下验证两者的发热均匀性;根据自行搭建的电热除冰实验台,研究不同热流密度和结冰温度对石墨烯加热膜除冰效果的影响。实验结果表明:单纯的石墨烯加热元件比电阻丝升温速率快,由石墨烯作为加热元件制备而成的加热膜发热更加均匀;随着热流密度的不断增加,石墨烯加热膜除冰时间越短,效果越好;结冰温度越低,除冰时间越长。验证了石墨烯可以作为一种理想的加热膜材料应用于电热除冰领域。  相似文献   

5.
为了在寒冷地区进行科学有效、环保经济的道路除雪化冰,弥补现有传统除雪化冰方法存在的缺陷,提出微波除雪化冰涂层技术。基于微波吸收材料的吸波机理与影响因素,优选羟基铁粉(RW)、羟基铁粉(YW1)、四氧化三铁、氧化铝和膨胀石墨作为微波敏感涂层吸波材料,进行微波敏感涂层材料融冰试验;通过对比不同组试验的温度升高值,分析不同涂层材料吸收微波产热并融化厚冰的能力,选用四氧化三铁、RW、膨胀石墨作为涂层材料分别进行涂层试件加热与融冰试验,研究沥青混凝土吸波涂层路面实际吸收微波融雪化冰的能力,在沥青混凝土试件制作涂层后,冻制5cm的厚冰,微波加热下采用升温差值来直观比较涂层材料吸收微波升温能力,综合考虑微波除冰效率、经济成本等因素,提出选用膨胀石墨作为微波敏感涂层材料。此外,进行了除雪化冰微波设备发射频率、功率、磁控管阵列等技术参数研究,在此基础上研发了便携式微波除冰车,并进行了便携式微波除冰车现场涂层微波加热试验。研究结果表明:四氧化三铁、RW、膨胀石墨3种材料吸收微波升温融冰的效果较好,膨胀石墨60s升温差值为40.2℃,四氧化三铁为8.4℃;采用膨胀石墨作为涂层材料与便携式微波除冰车配合应用的除冰效果良好,今后可为大型微波除冰雪设备的研究开发提供依据。  相似文献   

6.
侯志凌 《太原科技》2014,(3):109-110
预氧化在碳纤维生产过程中起到一个重要的过渡作用,适当的预氧化工艺是制备性能优异碳纤维的基本保障。笔者通过在空气气氛下对PAN基碳纤维进行不同温度热处理,通过调整工艺参数,研究PAN基碳纤维在预氧化过程中分子链内的环状结构形成机制。结果表明:聚丙烯腈原丝在预氧化过程中,自身的官能团发生了脱氢和环化反应,并形成了含有C=N,C-C的梯形结构。热氧化过程中温度低于250℃时,纤维表面含氧量不断增加,主要增加的官能团为羟基、醚键以及羰基。  相似文献   

7.
为研究陶瓷在热压烧结炉内温度场的动态分布规律,选用直径400 mm sialon陶瓷为研究对象,采用有限元辐射计算方法研究了加热速率、压头端面温度、隔热套筒高度对热压炉内温度场分布的影响.结果表明:在加热初始阶段,试样心部与边缘的温差随升温速率提高而增大,而在加热后期,随着升温时间增加,试样心部与边缘的温差逐渐减小,并稳定在17℃;样品区达到稳定温度所需时间随升温速率增加而减小;增大隔热套筒与模具之间的距离、增加石墨垫块与水冷压头之间的热阻均有利于提高样品区温度场的均匀性;样品区温度随其距中心距离增加而增大,并沿径向呈抛物线形分布.  相似文献   

8.
为提升沥青基碳纤维的力学性能,采用自制的激光超高温石墨化装置对中间相沥青基碳纤维进行石墨化处理。通过改变实验过程中的激光功率、牵伸力及碳纤维直径等3个因素制备了多组样品,研究了沥青基碳纤维拉伸强度随温度的变化规律,并分析了石墨化过程中牵伸力及碳纤维直径对其力学性能的影响。结果表明:沥青基碳纤维石墨化能承受的最大激光功率为360 W,对应的温度约为3 050℃,在此条件下处理得到的碳纤维拉伸强度由1.0 GPa提升至2.5 GPa;在碳纤维的承受范围内,其力学性能随着温度、牵伸力的增加而提高;直径较小的碳纤维力学性能提升更大。  相似文献   

9.
金属离子对PAN基碳纤维结构和性能的影响   总被引:3,自引:1,他引:2  
采用浸渍的方法,将钠、铁离子引入聚丙烯腈(PAN)纤维。经预氧化、低温碳化后,分别在1200、1300、1500℃温度下,对PAN纤维进行高温碳化处理。通过X射线衍射(XRD)、扫描电镜(SEM)、体密度、力学性能等测试手段研究了金属离子对PAN基碳纤维结构和性能的影响。结果表明,添加金属离子后,1500℃处理的碳纤维(002)面的层间距减小,碳纤维的抗拉强度降低,碳纤维的弹性模量增加;碳纤维横断面结构尺寸大小不一,结构疏松。金属离子的加入,一方面能促进碳纤维的乱层结构向石墨结构的转变,弹性模量增加;另一方面使碳纤维的缺陷增加,抗拉强度降低。  相似文献   

10.
为提高白玉菇的货架期,采用中短波红外线对白玉菇进行干燥,考察了干燥温度(60、70、80、90℃)和干燥功率(675、900、1 125、1 350 W)对白玉菇干燥特性的影响,并通过7种常用的农产品干燥模型对干燥过程进行了拟合,建立了白玉菇中短波红外干燥的动力学模型。研究结果表明:干燥温度和干燥功率对白玉菇的干燥过程均有影响,但干燥温度对干燥过程影响更大,干燥温度越高,干基含水率下降越明显。白玉菇干燥过程由内部水分扩散控制,降速阶段为主要阶段。Page模型的预测值与实验值具有较高的拟合度,能够较准确地反映白玉菇红外干燥过程,可以用来定量描述不同干燥温度和不同干燥功率下白玉菇的红外干燥过程规律。固定干燥功率为1 125 W时,水分有效扩散系数随着干燥温度的升高而增大,当干燥温度从60℃升高到90℃时,水分有效扩散系数从2.723×10~(-9) m~2/s升高到9.088×10~(-9) m~2/s;固定干燥温度为70℃时,水分有效扩散系数随着干燥功率的升高而增大,当干燥功率从675 W增加到1 350 W时,水分有效扩散系数从4.847×10~(-9) m~2/s升高到5.243×10~(-9) m~2/s。白玉菇中短波红外干燥活化能为39.45 kJ/mol。本研究旨在对白玉菇的中短波红外干燥工艺设计、设备选型及生产控制提供理论参考。  相似文献   

11.
为了考察Fe对PAN基碳纤维的影响,在凝固成型阶段将Fe引入聚丙烯腈(PAN)初生纤维中,通过后续过程制备含Fe的原丝,经过预氧化、碳化处理后,收取不同阶段的纤维。借助电感耦合等离子体-原子发射光谱(ICP-AES)、电子探针(EPMA)、力学性能测试、热重分析等手段,表征不同热处理阶段PAN纤维中Fe的含量、微区分布的变化及对碳纤维性能的影响。结果表明,含Fe的PAN原丝经预氧化、低温碳化过程,PAN纤维中Fe的质量未发生改变,当热处理温度达到1450℃后Fe开始损失,经1550℃高温处理后Fe的质量大幅度降低;热处理温度高于1350℃后,Fe在PAN纤维的径向逐渐呈现外缘多、内部少的特点,Fe有向纤维外部迁移的趋势;Fe的存在及高温迁移,降低了碳纤维的拉伸强度,影响了碳纤维的热稳定性能。  相似文献   

12.
3mm闭式脉动热管传热性能的实验研究   总被引:1,自引:0,他引:1  
为了研究大管径脉动热管的传热性能,设计并搭建了一种闭式脉动热管传热性能的测试装置,管道内径为3mm,由此实验研究了该装置在加热功率为0~90W范围内的传热性能,通过对冷凝段壁面温度波动特性进行分析,研究了不同加热方式对脉动热管传热性能的影响。结果表明:充液率为27.5%~67.5%时,脉动热管具有较好的传热性能,加热功率为90W时,各充液率下的热阻值均在0.4℃/W以下;当加热段的输入功率变化(加热功率以波动的方式输入)时,脉动热管的热阻大于对应的以恒定功率加热时的热阻,两者之间的差值随着加热功率的增大而减小;加热功率突变且超过启动功率时,脉动热管很快启动,但达到稳定需要较长的时间,而采用渐进的加热方式时,脉动热管在短时间内即可达到稳定。加热功率较小时推荐采用较小的充液率,加热功率较大时充液率的选择应综合考虑工质的热容量和传热特性。  相似文献   

13.
针对传统蒸发过程换热效率低下的问题,基于传统工艺流程设计微波闪蒸系统,在传统闪蒸罐体上设置微波馈口将微波能实时输入到闪蒸罐体内。为了验证微波闪蒸系统的蒸发处理能力,采用水作为介质研究系统在微波加热强化方式下的闪蒸效果。控制系统的真空度为70~78 kPa,分别研究微波功率(0.81~1.35 kW)、液体流量(10~40 L/h)和初始温度(50~90℃)对蒸发效果及闪蒸率的影响,并与不输入微波条件下的传统闪蒸效果进行比较。研究结果表明:在实验参数范围内,微波闪蒸产生的冷凝液体积以及随微波功率、液体流量、初始温度的增加而增加。当液体流量为40 L/h、微波功率为1.35 kW、初始温度为90℃时,相较于传统闪蒸,微波加热强化条件下闪蒸蒸汽温度从36.69℃升高至45.13℃,浓缩液温度从36.70℃升高至45.33℃,且强化蒸发效率达到42.86%。微波加热强化条件下的系统冷凝液体积比常规工况下的多,说明微波加热强化了闪蒸过程并有效提高了闪蒸率。  相似文献   

14.
以聚丙烯腈(PAN)和N,N-二甲基甲酰胺(DMF)为原料,通过静电纺丝-CO2活化法制备PAN基活性碳纳米纤维,探讨活化温度对活性碳纳米纤维孔结构及孔径分布的影响,并研究了所制备的PAN基活性碳纳米纤维对亚甲基蓝(MB)的吸附性能.结果表明,随着活化温度的升高,PAN基活性碳纳米纤维的比表面积(SBET)、总孔容(Vtotal)和微孔容(Vmi)均增大,当活化温度达到950℃时,SBET、Vtotal、Vαmi、Vtmi和VDmi分别高达1 484.5 m2·g-1、0.709 cm3·g-1、0.680 cm3·g-1、0.666 cm3·g-1和0.659cm3·g-1;Langmuir模型较Freundlich模型更适合描述所制备的PAN基活性碳纳米纤维对MB的吸附过程,且ACF950在(25±1)℃对MB的饱和吸附量高达270 mg·g-1.  相似文献   

15.
针对电磁涡流感应在实现碳纤维增强复合材料(CFRP)快速内部加热时内部多场问题尚缺少系统理论研究的情况,对航空碳纤维复材板进行了电-磁-热多场联合仿真与分析。首先,从CFRP的物理属性出发,分析其涡流热产生的物理原理;其次,设计不同叠层数目碳纤维复合材料,根据碳纤维复合板材电磁涡流形成规律,分析线圈输入功率/电压以及复材叠层数目对涡流热效应的影响;再次,使用电-磁-热联合多场有限元模型对感应加热过程中电磁涡流场和温度的分布情况进行仿真分析;最后,通过实验验证有限元模型计算结果。结果表明,涡流效应中碳纤维板可以产生呈闭环的感应电流,感应电流在碳纤维复材板上呈中间低、四周高的分布状态;在25 V的固定输入电压下,单层碳纤维板的热升温效应最明显,稳定温度约为141.4 ℃;随着输入功率/电压提升,双层碳纤维复合板材涡流热效应随之增大,达到热稳定所需时间也同步增加。通过电-磁-热联合多场有限元模型和验证实验,研究感应加热过程中电磁涡流场和温度的分布规律,对推动电磁涡流热效应在航空碳纤维复材感应焊接等领域的工程应用具有参考价值。  相似文献   

16.
对微波功率、加热时间、反应温度对预热球团强度的影响进行研究,并将微波加热与传统管炉加热进行对比.研究结果表明:有机粘结剂铁矿球团对微波具有良好的吸收性能,当微波功率为2.5kW,球团质量为0.4kg时,球团平均升温速率为76.1℃/min:微波加热能明显提高预热球团抗压强度;在微波功率为2.5 kW,加热时间为8 min,球团终点温度为830℃时,预热球团抗压强度为454 N/个;当加热时间为11 min,球团终点温度上升至1 000℃时,预热球团抗压强度为1 038 N/个;采用微波加热,预热球团内部矿物结构较均匀、紧密,细粒磁铁矿氧化成赤铁矿,并在大颗粒之间连接成片,球团强度明显提高.  相似文献   

17.
环境温度对道路微波除冰效率的影响   总被引:2,自引:0,他引:2  
为了实现冬季道路微波快速除冰,对微波除冰过程中的路面材料、环境温度、冰厚、冰层杂质含量(质量分数)、微波加热模式和波导口距路面高度等因素对微波除冰效率产生的影响进行了分析;并对关键影响因素之一的环境温度进行了仿真和试验研究。研究结果表明:相同情况下,环境温度越低,除冰效率就越低;微波加热停止最佳时刻应在路面与冰层结合处温度升至0℃后、结合处冰层开始融化前,具体时刻要靠实际路况确定。  相似文献   

18.
运用新型感应加热工艺,通过固-液-固相复合法制备铜/铝复合材料.由于加热功率和加热时间会影响结合层厚度的形成,根据感应加热原理及其焊接过程中焊接速度快、铝融化温度高以及铜铝材料紧密接触等特点,对已有焊接设备进行改进.使用直径为0.1 mm、可耐高温的镍铬-镍硅(NiCr-NiSi)表面瞬态热电偶对铜铝接触面之间的温度进行测量,设计与制造了加热时间控制器及热电偶测温装置,得到在焊接过程中不同感应加热功率条件下加热温度与加热时间之间的工艺曲线,得知铜铝运用感应加热工艺进行焊接时,不同加热功率对应不同的加热时间,感应加热功率越大,加热速率越大,所用加热时间越少;当感应加热功率为12.63 kW、加热时间为24 s时,所制备的铜铝复合材料结合层效果最佳.  相似文献   

19.
利用一维多取向X射线小角散射(SAXS)方法研究二次拉伸温度对聚丙烯腈碳纤维(PAN)原丝中微孔洞形貌的影响. 结果表明, 在一定温度(2T0)加热拉伸时, PAN原丝中微孔洞的相对体积分数(V/V0)较低温时有所增加, 但其取向角()最小, 长径比(L/2R)最大, 两者均有利于提高碳纤维的力学性能; 当拉伸温度过高时, 微孔洞形状的变化规律与之相反, 不利于提高碳纤维的力学性能.  相似文献   

20.
利用碳纤维水泥基(CFRC)材料的电热效应,通过对埋置于普通混凝土梁中的CFRC材料通电加热后产生的热膨胀可以实现对混凝土梁应变或挠度变形的主动调节和控制.实验验证了这个方案的可行性.根据弹性力学推导的理论值与混凝土梁挠度变形实测值非常吻合.通过改变内埋CFRC材料的输入功率和通电时间可以控制CFRC材料的升温速率和终点温度,继而控制混凝土梁的变形速率和最大变形值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号