首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对传统的SMOTE方法在类别区域重合的数据集应用时,可能产生多个更接近多数类的人工样例,甚至突破类别边界,从而影响整体分类性能的情况,提出了一种最近三角区域的SMOTE方法,使合成的人工样例只出现在少数类样例的最近三角区域内部,并且删除掉距离多数类更近的合成样例,从而使生成的样例更接近少数类,且不突破原始的类别边界。实验分别在人工数据集和改进的UCI数据集上进行,并和原始的SMOTE方法分别在G-mean和F-value的评价指标上进行了对比,实验结果验证了改进的SMOTE方法在类别区域有重合的数据集上要优于原始SMOTE方法。  相似文献   

2.
面向不平衡数据集的一种精化Borderline-SMOTE方法   总被引:2,自引:0,他引:2  
合成少数类过采样技术(SMOTE)是一种被广泛使用的用来处理不平衡问题的过采样方法,SMOTE方法通过在少数类样本和它们的近邻间线性插值来实现过采样.Borderline-SMOTE方法在SMOTE方法的基础上进行了改进,只对少数类的边界样本进行过采样,从而改善样本的类别分布.通过进一步对边界样本加以区分,对不同的边界样本生成不同数目的合成样本,提出了面向不平衡数据集的一种精化Borderline-SMOTE方法(RB-SMOTE).仿真实验采用支持向量机作为分类器对几种过采样方法进行比较,实验中采用了10个不平衡数据集,它们的不平衡率从0.064 7到0.536 0.实验结果表明:RB-SMOTE方法能有效地改善不平衡数据集的类分布的不平衡性.  相似文献   

3.
少数类样本合成过抽样技术(SMOTE)是一种过抽样数据预处理算法,是在两个少数类之间随机插入一个新的少数类样本.为了解决SMOTE算法生成少数样本随机性的局限性,在考虑多数类样本分布会对少数样本的生成产生影响的基础上,提出了改进的SMOTE算法.在WEKA平台上分别使用改进前后的SMOTE算法对选用的UCI数据集进行过抽样数据预处理,并使用朴素贝叶斯、决策树和K邻近分类器对过抽样后的数据集进行分类,选择几何均数(G-mean)和曲线下面积(AUC)两个评价指标,实验显示改进后的SMOTE算法预处理的数据集的分类效果更好,证明改进后的SMOTE算法生成的少数类样本更加合理.  相似文献   

4.
提出一种改进随机子空间与C4.5决策树算法相结合的分类算法.以C4.5算法构建决策树作为集成学习的基分类器,每次迭代初始,将SMOTE采样技术与随机子空间方法相结合,生成在特征空间和数据分布上差异明显的合成样例,为基分类器提供多样化的平衡训练数据集,采用绝大多数投票方法进行最终决策的融合输出.实验结果表明,该方法对少数类和多数类均具有较高的识别率.  相似文献   

5.
针对不平衡数据集数据分布不均匀及边界模糊的特点,提出一种新的近邻密度SVM(NNDSVM)不平衡数据集分类算法。该算法先计算多数类中每个样本K近邻范围内的密度值,依据该密度值分别选出边界区域、靠近边界区域的与少数类数目相等的样本与少数类完成SVM初始分类;用所得的支持向量机和剩余的多数类样本对初始分类器迭代优化。人工数据集和UCI数据集的实验结果表明,与SVM、ALSMOTE-SVM和WSVM算法相比,本文算法分类效果良好,能有效改进SVM算法在分布不均匀及边界模糊数据集上的分类性能。  相似文献   

6.
针对不平衡数据集数据分布不均匀及边界模糊的特点,提出基于局部密度改进的SVM(NLDSVM)不平衡数据集分类算法。该算法先用层次k近邻法计算多数类中每个样本的局部密度,依据每个样本的局部密度值分别选出边界区域、靠近边界区域的与少数类数目相等的样本与少数类完成SVM初始分类;用所得的支持向量机和剩余的多数类样本对初始分类器迭代优化。人工数据集和UCI数据集的实验结果表明,与WSVM,ALSMOTE-SVM和基本SVM算法相比,NLDSVM算法G-mean的平均值提高了7%,F-measure的平均值提高了6%,AUC的平均值提高了6%。NLDSVM算法分类效果良好,能有效改进SVM算法在分布不均匀及边界模糊数据集上的分类性能。  相似文献   

7.
结合三支决策和合成少数过采样技术(synthetic minority over-sampling technique, SMOTE),提出了一种新的采样方法—三支过采样(three-way over-sampling, 3WOS)。3WOS通过对所有样本构建三支决策模型,选取该模型边界域中的样本作为关键样本进行SMOTE过采样,从而有效缓解样本聚集和分离问题,在一定程度上提高了分类器性能。该方法首先在少数类样本上应用三支决策和支持向量数据描述,将所有样本数据进行三分;其次,找出所有关键样本的k个最近邻少数类样本,并使用线性插值方式对每个关键样本合成新样本,然后形成新的少数类样本;最后,将更新后的样本集用于训练分类器。实验结果表明,3WOS方法比其他方法在基分类器上有较好的分类准确度、F-measure、G-mean和较少的代价值。  相似文献   

8.
现实世界中的数据挖掘经常涉及从类别分布不平衡的数据集学习,少数类的数量相比于其他类较少.从包含少数类的数据集中学习,通常会产生偏向于多数类的预测分类器,但对少数类的预测精度较差.针对少数类学习提出一种新的集成算法Cost-SMOTEBoost,该算法是SMOTE算法和AdaCost算法的结合.通过实验表明,Cost-SMOTEBoost算法在不降低精确率的情况下提高了召回率,从而提高了在分布不平衡数据集上的表现.  相似文献   

9.
针对不平衡数据中类重叠区域易造成分类错误的问题,提出一种引入合成因子改进边界分类的Borderline-SMOTE过采样方法(IBSM).首先根据少数类样本近邻分布情况找出处于边界的少数类样本,然后计算边界样本对应的合成因子,并根据其取值更新该样本需生成的样本数,最后在近邻中根据合成因子挑选距离最近的top-Z少数类样本进行新样本生成.将提出的方法与八种采样方法在KNN和SVM两种分类器、10个KEEL不平衡数据集上进行对比实验,结果表明,提出的方法在大部分数据集上的F1,G-mean,AUC (Area under Curve)均获得最优值,且F1与AUC的Friedman排名最优,证明所提方法和其余采样方法相比,在处理不平衡数据中的边界样本分类问题时有更好的表现,通过合成因子设定一定的约束条件与分配策略,可以为同类研究提供思路.  相似文献   

10.
针对不平衡数据集数据分布不均匀及边界模糊的特点,提出基于局部密度改进的SVM不平衡数据集分类算法.该算法先将多数类划分成多个子类,并依据子类内每个样本的局部密度选出边界区域、靠近边界区域的与少数类数目相等的样本,与少数类完成SVM初始分类;用所得的支持向量机和剩余的多数类样本对初始分类器进行迭代优化.结果表明,与WSVM,ALSMOTE-SVM和基本SVM算法相比,该算法分类效果良好,能有效改进SVM算法在分布不均匀及边界模糊数据集上的分类性能.  相似文献   

11.
张阳  张涛  陈锦  王禹  邹琪 《北京理工大学学报》2019,39(12):1258-1262
网络入侵检测已经广泛运用机器学习模型,但是研究者们多关注模型选择和参数优化,很少考虑数据不平衡的影响,往往会导致少数类入侵样本的检测效果较差.针对该问题,以SMOTE (synthetic minority oversampling technique)数据再平衡算法为研究重点,应用入侵检测数据集KDD99作为原始训练集,使用简单抽样和SMOTE算法生成再平衡训练集.采用多种机器学习模型分别在原始训练集和再平衡训练集进行5折交叉验证.实验结果表明,与原始训练集相比,使用再平衡训练集建模能够在不降低甚至提高多数类样本识别效果前提下,使少数类样本的识别准确率和召回率增强10%~20%.因此,SMOTE算法对不平衡样本下的网络入侵检测有显著的提升作用.   相似文献   

12.
针对不平衡数据集数据分布不均匀及边界模糊的特点,提出一种新改进的SVM(IMSVM)不平衡数据集分类算法。该算法先计算每个样本在距离临界区域内的密度值,依据样本的密度值分别选出边界区域、靠近边界区域的与少数类数目相等的样本与少数类完成SVM初始分类;再用所得的支持向量机和剩余的多数类样本对初始分类器迭代优化。人工数据集和UCI数据集的实验结果表明:与WSVM、ALSMOTE-SVM和基本SVM算法相比,对于不平衡性较高的Spectf Heart数据集;本文算法较其他算法的G-mean提高了5.59%,F-measure提高了6.43%,CPU运行时间降低了13%。上述结果表明:IMSVM算法分类效果良好,能有效改进SVM算法在分布不均匀及边界模糊数据集上的分类性能。  相似文献   

13.
地震属性可以用来解释与预测地质构造,因此地震属性被广泛地运用在煤矿地质构造的识别。但一般情况下,勘探区中无构造区域与有构造区域分布不均衡,无构造区域远远多于有构造区域。机器学习中,传统的分类器更习惯于偏向多数类,这使得如何有效地识别出构造体成为一个难题。为了解决这一问题,提出了一种针对不平衡数据集的改进极限梯度提升(extreme gradient boosting, XGBoost)构造识别方法。该方法的原理是,首先,以基于三维地震勘探成果数据体提取的12种地震属性为数据集特征,以实际揭露后的地质构造为数据集标签构建多属性数据集,然后以特征对标签的相关性为标准,过滤掉冗余的特征;其次,将边界样本分类算法(boundary sample classification, BSC)与合成少数类过采样技术(synthetic minority over-sampling technique, SMOTE)相结合形成BSC-SMOTE算法。用BSC-SMOTE算法对原始数据集进行平衡,再利用平衡后的数据集训练XGBoost分类器,并用贝叶斯优化(Bayesian optimization, B...  相似文献   

14.
采用少类样本合成过采样技术(SMOTE)与二叉树多类支持向量机(BTSVM)相结合的入侵检测算法来解决实际应用中经常遇到的类别不平衡的分类问题.该方法首先对不平衡类别的训练集使用BTSVM分类,然后对求出各分类器中的支持向量使用SMOTE方法进行向上采样,最后用不平衡类别的测试集在新的分类模型中进行测试.实验结果表明本算法能够有效地提高不平衡数据集的分类性能.  相似文献   

15.
针对非平衡交互文本少数类实例匮乏易导致训练的情感分类模型泛化性能差的问题,提出基于超平面距离的非平衡交互文本情感实例迁移方法。该方法将在少数类和多数类支持向量之间的源数据集实例作为待迁实例,并基于目标数据集上的分类超平面构造一个偏移超平面。依据最优信息效用原则基于待迁实例到偏移超平面的距离最短来筛选迁入的实例,同时通过调节迁入比例控制迁入实例规模生成合成数据集。实验结果表明:随着迁入实例增多,合成数据集对原始分布的偏离增大,所训练的序列最小优化算法(SMO)模型的泛化分类性能呈现先提升后降低的现象,类似于信息效用的Wundt曲线;与SMOTE、Subsampling、Oversampling 3种数据层处理方法相比,所提方法训练的SMO、LibSVM、随机森林、代价敏感、CNN 5个分类模型在少数类识别F值上平均获得11%的增幅,且迁入比例最佳范围为20%~30%,在有效缓解非平衡特性的同时提高了少数类识别的泛化分类性能。  相似文献   

16.
针对不平衡数据集的低分类准确性,提出基于蚁群聚类改进的SMOTE不平衡数据过采样算法ACC-SMOTE.一方面利用改进的蚁群聚类算法将少数类样本划分为不同的子簇,充分考虑类间与类内数据的不平衡,根据子簇所占样本的比例运用SMOTE算法进行过采样,从而降低类内数据的不平衡度;另一方面对过采样后的少数类样本采用Tomek ...  相似文献   

17.
由于航班延误数据集类别分布不均,传统分类器的性能受到一定程度的制约。为了能够对到港航班延误情况进行精准预测,提出了一种基于合成少数类过采样技术算法(synthetic minority oversampling technique, SMOTE)和条件生成对抗网(conditional generative adversarial nets, CGAN)的航班延误预测模型。首先,利用SMOTE算法对原始数据集进行上采样,并融合经过训练的CGAN生成指定样本数据集,缓解原始数据集中某些类别样本量少和数据非平衡等问题;再次,采用XGBoost模型在四种模式训练集上进行训练和超参数寻优;最后,以K近邻、支持向量机和随机森林为基准模型进行性能对比分析。经试验分析,通过分类器在融合样本集的训练,整体上可以在一定程度上提高模型的泛化性,尤其在轻度延误和中度延误类别中提升较为明显,与不采用融合方法比较,宏平均下的Precision、Recall、F1-score值分别提升了0.16、0.29、0.24个百分点。实验结果表明,该方法能够有效地对航班延误非平衡数据进行建模,在保持模型整体性能较高的前提下,能够显著的提升少数类的预测能力,可以为空管、航空公司和机场等提供决策依据。  相似文献   

18.
针对SMOTE算法和随机森林可较好解决不平衡数据集的分类问题但对少数类样本分类效果还有待提高的问题,融合Canopy和K-means两种聚类算法,设计了C-K-SMOTE改进算法。先后利用Canopy算法进行快速近似聚类,再利用K-means算法进行精准聚类,得到精准聚类簇,最后利用SMOTE算法增加少数类样本数量,使数据趋于平衡。选取公开数据集KEEL(knowledge extraction on evolutionary learning)数据库中的不平衡数据集,结合随机森林分类模型进行了实验验证,实验表明C-K-SMOTE算法可有效平衡不平衡数据集。  相似文献   

19.
传统的分类算法大多假设数据集是均衡的,追求整体的分类精度.而实际数据集经常是不均衡的,因此传统的分类算法在处理实际数据集时容易导致少数类样本有较高的分类错误率.现有针对不均衡数据集改进的分类方法主要有两类:一类是进行数据层面的改进,用过采样或欠采样的方法增加少数类数据或减少多数类数据;另一个是进行算法层面的改进.本文在原有的基于聚类的欠采样方法和集成学习方法的基础上,采用两种方法相结合的思想,对不均衡数据进行分类.即先在数据处理阶段采用基于聚类的欠采样方法形成均衡数据集,然后用AdaBoost集成算法对新的数据集进行分类训练,并在算法集成过程中引用权重来区分少数类数据和多数类数据对计算集成学习错误率的贡献,进而使算法更关注少数数据类,提高少数类数据的分类精度.  相似文献   

20.
近年来非平衡多分类数据的学习问题在机器学习和数据挖掘领域备受关注,上采样技术成为解决数据不平衡问题的主要方法,然而已有的上采样技术仍有很多的不足,例如新合成的少数类样本仍可能分布在对应少数类样本的原始区域内,不能有效改善数据分布的不平衡情况.此外,若原始样本中不同类别样本分布存在重叠,则新合成的样本会更容易偏离到其他类样本分布中,从而造成过泛化现象,影响少数类样本的分类精度.为解决上述问题,提出一种二次合成的上采样方法(Quadratic Synthetic Minority Over-sampling Technique,QSMOTE).首先通过少数类样本的支持度选择包含重要信息的样本来进行第一次合成,然后通过分析指定少数类样本质心的邻域内样本分布情况来调整第二次样本合成范围,并最终进行第二次合成.在UCI和MNIST数据集上的实验结果表明,QSMOTE不仅可以改善数据分布的不平衡问题,而且可以尽可能地减少过泛化现象,特别是对少数类样本的分类准确率有大幅提升.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号