首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以搭载双目视觉系统的六足步行机器人HITCR-II为研究对象,根据选取的落足点,设计了机器人兼顾运动效率和稳定性的位姿调整策略。通过足端轨迹规划和机器人逆运动学算法求得各个关节的运动轨迹,在Adams中对机器人在自然地形中行走过程进行了运动学仿真实验。实验结果表明,使用该位姿调整策略,能够使六足步行机器人HITCR-II实现在自然地形下的高效稳定地运动。  相似文献   

2.
对机器人自身运动能力的把握是进行合理运动规划和控制的前提.针对面向崎岖地形应用的六足机器人的运动能力进行分析.首先,介绍了六足机器人平台及其系统设计;然后,分别对六足机器人腿部、由机器人躯干和各支撑腿构成的并联机构进行了运动学建模,并分析了它们的工作空间;最后,基于Adams和Matlab建立了含有梅花桩崎岖地形的六足机器人仿真平台,并进行了六足机器人运动仿真.结果表明:通过结合六足机器人自身运动能力和地形特征进行合理的运动规划,可有效提高六足机器人在崎岖地形下的运动能力.  相似文献   

3.
为准确跟随具有姿态信息的给定轨迹,充分发挥六足机器人运动潜能,从机器人单足运动学分析入手,基于足端轨迹的参数化处理,针对不同地形设计了抛物线和直线-抛物线两类参数化足端轨迹,以便通过参数调整快速规划满足不同需求的足端轨迹,实现摆动相足端在落足点间的高效转移.基于运动相对性将考虑姿态的机体运动规划等效转化为各支撑足独立的足端轨迹规划以简化时变并联机构的逆解求取问题,实现机体位姿的动态调整.在此基础上,解除机体与摆动相足端的运动耦合,提出了一种新的多足协调控制方法,并结合仿真实验对该方法的可行性进行了验证.仿真实验结果表明,本方法可高效协调各足跟随具有姿态信息的给定轨迹.  相似文献   

4.
针对六足机器人非结构化地形稳定步行问题,研究了基于足力分布的位姿调整策略.通过力学分析建立了机器人任意步态模式下的足力分布模型,获得足底受力的平衡关系;采用重心位置调整策略实现了机器人步行过程中的位姿优化,来提高步行稳定性;并且建立了虚拟悬挂模型,采用足力补偿的方法对外界的扰动进行抑制,进一步提高机器人步行的稳定性.通过仿真验证了该调整策略对提高机器人步行稳定裕度的有效性.  相似文献   

5.
六足机器人HITCR-I的研制及步行实验   总被引:1,自引:0,他引:1  
针对六足机器人的非结构化地形步行问题,研制了小型六足机器人HITCR-I.设计了基于复合四连杆机构的腿部结构,使其具备全方位的运动能力.为了进一步提高机器人的运动性能,构建了描述六足机器人整体灵活度的表达式,并依据表达式进行了结构优化设计.基于“行为”和“功能”的思想对控制目标进行规划,设计了基于“功能-行为”控制体系构架的运动控制器,结合适应非结构化地形腿部运动轨迹的规划和基于局部规则的自由步态生成,实现了非结构化地形六足机器人有效且稳定的步行.最后通过实验验证了六足机器人系统HITCR-I非结构化地形的步行能力.  相似文献   

6.
六足机器人HITCR-Ⅰ的研制及步行实验   总被引:1,自引:0,他引:1  
针对六足机器人的非结构化地形步行问题,研制了小型六足机器人HITCR-Ⅰ.设计了基于复合四连杆机构的腿部结构,使其具备全方位的运动能力.为了进一步提高机器人的运动性能,构建了描述六足机器人整体灵活度的表达式,并依据表达式进行了结构优化设计.基于"行为"和"功能"的思想对控制目标进行规划,设计了基于"功能-行为"控制体系构架的运动控制器,结合适应非结构化地形腿部运动轨迹的规划和基于局部规则的自由步态生成,实现了非结构化地形六足机器人有效且稳定的步行.最后通过实验验证了六足机器人系统HITCR-I非结构化地形的步行能力.  相似文献   

7.
在未知地形行走时,由于地形突变,采用常见步态算法的四足机器人容易受到冲击,导致失稳,为此,提出一种改进的四足机器人足端轨迹规划的算法。将足端运动轨迹分段优化,减小机器人在水平地面、上坡和下坡地形的足端力矩变化,增加四足机器人运动的稳定性。实验选用斯坦福四足机器人,记录俯仰角pitch、横滚角roll及足端力矩在机器人通过不同地形时的变化。实验结果表明,足端轨迹优化后的机器人在未知地形中行走的稳定性得到有效提升。  相似文献   

8.
基于零力矩点的四足机器人非平坦地形下步态规划与控制   总被引:2,自引:1,他引:1  
为提升四足机器人在非平坦地形中的行走能力,根据零力矩点理论分析机器人行进过程的稳定条件,利用稳定裕度的概念,在支撑多边形中求取最优稳定点来规划零力矩点. 为避免walk步态中频繁调整躯干姿态导致的能耗和行进速度损失,提出了在次优支撑三角形中求取最优稳定点的方法. 针对斜坡地形中机器人运动性和稳定性的矛盾,设计了综合性能更高的躯干姿态和支撑点位置. 为适应不同坡度和躯干角度,通过对零冲击足端轨迹规划方法进行改进,实现了以目标支撑点为中心的斜坡零冲击规划目标. 仿真试验结果表明,该规划控制方法能够实现机器人在不同斜坡中的稳定行走.   相似文献   

9.
为实现四足机器人在复杂的地形环境、有限的能量供应和不可预知的干扰下运动稳定,提高四足机器人穿越复杂地形的能力,采用了粒子群优化算法对经典步行步态参数进行优化,提出了一种易于实现、能适应不同地形的探索性步态. 所提出的探索步态不需要立体视觉或激光雷达所感测到的任何地形信息,机器人通过IMU传感器和足端力传感器接触地面来感知地形. 针对提出的优化方法和步态策略进行了仿真和实验,验证了所提出的探索性步态在穿越不平坦地形时的运动能力.   相似文献   

10.
为了实现离散化四足机器人自由步态的控制,提出一种新的基于中枢神经模式发生器(CPG)的自由步态控制方法。介绍了离散化四足机器人模型,在已确定的地形中,设定四足机器人起始点与抵达点的状态。将连续步态按照离散化步态完成排序,形成排序集合。在此基础上,利用中枢神经模式发生器CPG,采用周期性振荡信号对离散化四足机器人腿部各关节进行控制,给出单独神经元模型。为了便于分析,使用互抑神经元构成的振荡器对神经元的输出信号进行改善,通过该振荡器产生规律的振荡信号,以控制离散化四足机器人完成自由步态移动。实验结果表明,所提方法能够有效控制离散化四足机器人实现自由步态移动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号