首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《矿物冶金与材料学报》2021,28(12):2001-2007
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and regenerability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g?1 Pb(II) cations from wastewater, and the adsorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% adsorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):1908-1916
The effect of CaCO3, Na2CO3, and CaF2 on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe3PO7 and apatite was investigated. The results revealed that Na2CO3 had the most significant effect on iron recovery and dephosphorization, followed by CaCO3, the effect of CaF2 was negligible. The mechanisms of CaCO3, Na2CO3, and CaF2 were investigated using X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS). Without additives, Fe3PO7 was reduced to elemental phosphorus and formed an iron–phosphorus alloy with metallic iron. The addition of CaCO3 reacted with Fe3PO7 to generate an enormous amount of Ca3(PO4)2 and promoted the reduction of iron oxides. However, the growth of iron particles was inhibited. With the addition of Na2CO3, the phosphorus in Fe3PO7 migrated to nepheline and Na2CO3 improved the reduction of iron oxides and growth of iron particles. Therefore, the recovery of iron and the separation of iron and phosphorus were the best. In contrast, CaF2 reacted with Fe3PO7 to form fine Ca3(PO4)2 particles scattered around the iron particles, making the separation of iron and phosphorus difficult.  相似文献   

3.
4.
Carbonated decomposition of hydrogarnet is one of the vital reactions of the calcification–carbonation method, which is designed to dispose of low-grade bauxite and Bayer red mud and is a novel eco-friendly method. In this study, the effect of the silica saturation coefficient (x) on the carbonation of hydrogarnet was investigated from the kinetic perspective. The results indicated that the carbonation of hydrogarnets with different x values (x = 0.27, 0.36, 0.70, and 0.73) underwent two stages with significantly different rates, and the kinetic mechanisms of the two stages can be described by the kinetic functions R3 and D3. The apparent activation energies at Stages 1 and 2 were 41.96–81.64 and 14.80–34.84 kJ/mol, respectively. Moreover, the corresponding limiting steps of the two stages were interfacial chemical reaction and diffusion.  相似文献   

5.
《矿物冶金与材料学报》2020,27(10):1347-1352
A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.  相似文献   

6.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting (CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min?1 and casting speed of 1.7 m·min?1. Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

7.
Electroslag remelting (ESR) gives a combination of liquid metal refining and solidification structure control. One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production is desulfurization. It involves two patterns, i.e., slag–metal reaction and gas–slag reaction (gasifying desulfurization). In this paper, the advances in desulfurization practices of ESR are reviewed. The effects of processing parameters, including the initial sulfur level of consumable electrode, remelting atmosphere, deoxidation schemes of ESR, slag composition, melting rate, and electrical parameters on the desulfurization in ESR are assessed. The interrelation between desulfurization and sulfide inclusion evolution during ESR is discussed, and advancements in the production of sulfur-bearing steel at a high-sulfur level during ESR are described. The remaining challenges for future work are also proposed.  相似文献   

8.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

9.
The mineral transition and formation mechanism of calcium aluminate compounds in CaO?Al2O3?Na2O system during the high-temperature sintering process were systematically investigated using DSC?TG, XRD, SEM?EDS, FTIR, and Raman spectra, and the crystal structure of Na4Ca3(AlO2)10 was also simulated by Material Studio software. The results indicated that the minerals formed during the sintering process included Na4Ca3(AlO2)10, CaO·Al2O3, and 12CaO·7Al2O3, and the content of Na4Ca3(AlO2)10 could reach 92wt% when sintered at 1200°C for 30 min. The main formation stage of Na4Ca3(AlO2)10 occurred at temperatures from 970 to 1100°C, and the content could reach 82wt% when the reaction temperature increased to 1100°C. The crystal system of Na4Ca3(AlO2)10 was tetragonal, and the cells preferred to grow along crystal planes (110) and (210). The formation of Na4Ca3(AlO2)10 was an exothermic reaction that followed a secondary reaction model, and its activation energy was 223.97 kJ/mol.  相似文献   

10.
Ore particles, especially fine interlayers, commonly segregate in heap stacking, leading to undesirable flow paths and changeable flow velocity fields of packed beds. Computed tomography (CT), COMSOL Multiphysics, and MATLAB were utilized to quantify pore structures and visualize flow behavior inside packed beds with segregated fine interlayers. The formation of fine interlayers was accompanied with the segregation of particles in packed beds. Fine particles reached the upper position of the packed beds during stacking. CT revealed that the average porosity of fine interlayers (24.21%) was significantly lower than that of the heap packed by coarse ores (37.42%), which directly affected the formation of flow paths. Specifically, the potential flow paths in the internal regions of fine interlayers were undeveloped. Fluid flowed and bypassed the fine interlayers and along the sides of the packed beds. Flow velocity also indicated that the flow paths easily gathered in the pore throat where flow velocity (1.8 × 10?5 m/s) suddenly increased. Fluid stagnant regions with a flow velocity lower than 0.2 × 10?5 m/s appeared in flow paths with a large diameter.  相似文献   

11.
为研究自吸泵叶轮气液混合能力对自吸性能的影响,在叶轮原模型基础上,设计了叶片不同进口边位置的5种模型方案.采用VOF多相流模型对不同方案全流域进行三维定常数值计算,研究对自吸性能的影响规律.针对350WFB-1200-50型外混式无密封自吸泵,初始条件设定进水S型弯管中含一定体积的空气段,出口处设置含气率监测点.结果表明:针对中高比转速叶轮,进口边沿后盖板位置向出口前掠,使得叶轮进口边工作时对流体分时加载,可以有效提升叶轮的气液混合能力,从而缩短自吸泵的自吸时间;在一定前掠角度范围内改变进口边位置对自吸泵的扬程和效率影响不大,但是当叶片进口边向出口位置前掠超过一定范围时,会导致自吸泵扬程明显下降;当叶轮进口边前掠10°时,额定工况下自吸时间缩短25%,自吸性能明显得到提高.  相似文献   

12.
介绍了目前图书馆业务外包的外延和内涵,论述了业务外包之后的图书馆办馆效益,分析了业务外包带来的问题,对业务外包后的图书馆事业可持续发展进行了思考。  相似文献   

13.
作为二十世纪五六十年代国内最权威的诗歌刊物《,诗刊》无疑代表了当时的文学潮流,并引领着文学的走向。研究自1957年1月到1965年停刊的《诗刊》,可以清晰地把握当时的诗坛动态和文学环境,不失为五六十年代中国文学的一份生动史料。本文着重考察的是《诗刊》如何以对“五四”以来新诗人的重估和对新诗史的重构,完成了新诗在五六十年代的历史叙述。  相似文献   

14.
医疗体育对大学生身高增长的影响   总被引:4,自引:0,他引:4  
19至24岁的大学生,随着内脏器官的不断完善,两次身高增长的高峰期已经过去,一但骨骺部位闭合,骨化,身高的增长就几乎停止。通过对815名学生样本数据的正态分析和对中外多项增高实例研究,对比,得出大学生群体中身材矮小及伴随相关心问题的人,通过有针对性的体疗锻炼,能使其形体和心理都得到有效的改善。对大学生身体发育抢救阶段,医疗体育(体疗)方案,运动处方,增高器械等方面的深入探索,对培养高素质人才具有深远的意义。  相似文献   

15.
罗兰.巴特的著名论文《作者之死》文字不多,但其思想来源却十分复杂:哲学界反理性思想尤其是福柯的"人之死"理论、索绪尔的结构语言学理论和拉康的主体观、法国当时的社会现实等都为"作者之死"理论的提出准备了条件。和福柯、拉康在哲学界高倡"人之死"、"主体死了"相呼应,巴特把矛头指向权力结构在文学批评领域的体现者——作者身上。他宣布了"作者之死",在话语领域中争取实现自己的乌托邦理想。  相似文献   

16.
技术异化的生成   总被引:3,自引:0,他引:3  
从技术的复杂性和局限性、技术的不恰当使用、自然的不可预见性、技术理性的沙文主义式扩展及社会文化等几个方面探讨了技术异化产生的根源。  相似文献   

17.
阐述了湿度传感器稳定性的误差,指出影响湿度传感器稳定性的误差有线性误差、温度影响误差、湿滞误差以及校验标准误差等.  相似文献   

18.
提单是国际贸易中最重要的单据,在货物所有权转移、国际贸易支付中扮演着非常重要的角色。根据提单效力识别的途径,可以把提单效力区分为完全物权、准物权和占有权,而在国际贸易案件中,国家立法的迥异和司法机关对于相关公约的理解不同,会造成相同案件的不同判断。因此,对提单物权效力的识别进行规范化和标准化解释,有助于国际贸易的顺利发展。  相似文献   

19.
对图书馆读者满意度问题的思考   总被引:6,自引:0,他引:6  
分析了图书馆读者满意度的含义及衡量要素,论述了图书馆调查读者满意度的目的及方式,提出了图书馆提升读者满意度的策略。  相似文献   

20.
20世纪30年代集团结婚在民国社会处于急剧变化的时期兴起,它的产生主要是受到清末以来的文明结婚的影响,民国时期社会经济发展的严重困难和30年代新生活运动的推动也是它产生的重要原因, 是中国婚俗上的一大变革。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号