首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O R?tzschke  K Falk  K Deres  H Schild  M Norda  J Metzger  G Jung  H G Rammensee 《Nature》1990,348(6298):252-254
Virus-infected cells can be eliminated by cytotoxic T lymphocytes (CTL), which recognize virus-derived peptides bound to major histocompatibility complex (MHC) class I molecules on the cell surface. Until now, this notion has relied on overwhelming but indirect evidence, as the existence of naturally processed viral peptides has not been previously reported. Here we show that such peptides can be extracted from virus-infected cells by acid elution. Both the naturally processed H-2-Db-restricted and H-2-Kd-restricted peptides from influenza nucleoprotein are smaller than the corresponding synthetic peptides, which have first been used to determine the respective CTL epitopes. As with minor histocompatibility antigens, occurrence of viral peptides seems to be heavily dependent on MHC class I molecules, because infected H-2d cells do not contain the H-2-Db-restricted peptide, and infected H-2b cells do not contain the H-2-Kd-restricted peptide. Our data provide direct experimental proof for the above notion on MHC-associated viral peptides on virus-infected cells.  相似文献   

2.
H J Wallny  H G Rammensee 《Nature》1990,343(6255):275-278
Histocompatibility antigens expressed on tissue grafted between individuals are recognized by host T cells, which reject the graft. The major histocompatibility complex (MHC) antigens have been identified on the molecular level, whereas the molecules representing the remaining ones, the minor histocompatibility antigens, are unknown, apart from some exceptions. The cytotoxic T lymphocyte (CTL) response against minor histocompatibility antigens shares many aspects with that against virus-infected cells. Virus-specific CTL recognize peptides derived from viral proteins produced in the infected cell. These peptides are presented by MHC class I molecules, as indicated by functional and crystallographic data. By analogy, minor histocompatibility antigens have been postulated to be peptides derived from normal cellular proteins presented by MHC class I molecules. Here we report that peptides derived from normal cellular proteins can indeed be recognized by CTL raised in the classical minor histoincompatible mouse strain combination, C57BL/6 against BALB.B. Thus, we have proven the above postulate, and isolated one of the minor histocompatibility molecules elusive for several decades.  相似文献   

3.
Beta 2-microglobulin (beta 2-m) is a highly conserved polypeptide (12,000 molecular weight; 12K) noncovalently associated with the heavy chain (45-48K) of the major histocompatibility complex (MHC) class I antigens. Its synthesis is required for expression of the HLA-A/B and H-2K/D heavy chains at the cell surface; beta 2-m is also associated with the human cell-surface antigens T6 and M241 isolated from thymocytes. However, on the T leukaemic cell line MOLT-4 some of the T6 antigens contain a different 12K subunit, termed beta t (refs 3, 7, 8). Purified human beta 2-m can exchange partially both with human beta 2-m associated with HLA-antigens, and with mouse beta 2-m associated with murine alloantigens. As MOLT-4 cells were grown in the presence of fetal calf serum (FCS) and as serum is known to contain some free beta 2-m, we examined whether beta t was bovine beta 2-m which had replaced endogenous beta 2-m on the surface of the cell. Here we show both that beta 2-m from FCS or human serum (HuS) used in cell culture can exchange with beta 2-m on the cell surface, and that beta t is in fact bovine beta 2-m.  相似文献   

4.
S Kvist  U Hamann 《Nature》1990,348(6300):446-448
Most cytotoxic T lymphocytes (CTL) recognize epitopes of foreign viral proteins in association with class I major histocompatibility complex (MHC) molecules. Viral proteins synthesized in the cytoplasm require intracellular fragmentation and exposure to the class I antigens for the development of CTL responses. Although indirect evidence for binding of peptides to class I antigens has accumulated, direct binding has only been shown recently. The formation of complexes between peptide and class I antigen may occur in the endoplasmic reticulum (ER) and peptides have been shown to induce assembly of the class I complex. We have translated the messenger RNAs encoding HLA-B27 (subtype 2705) and beta 2-microglobulin in a rabbit reticulocyte lysate supplemented with human microsomal membranes (to mimic ER membranes), in the absence and presence of a peptide derived from the nucleoprotein (residues 384-394) of influenza A virus. This peptide induces CTL activity against target cells expressing the HLA-B27 antigen. Here we report direct evidence that the nucleoprotein peptide promotes assembly of the HLA-B27 heavy chain and beta 2-microglobulin, and that this can occur in the ER immediately after synthesis of the two proteins.  相似文献   

5.
Cytotoxic T lymphocytes recognize fragments (peptides) of protein antigens presented by major histocompatibility complex (MHC) class I molecules. In general, the peptides are derived from cytosolic proteins and are then transported to the endoplasmic reticulum where they assemble with the MHC class I heavy chains and beta 2-microglobulin to form stable and functional class I molecules. The proteases involved in the generation of these peptides are unknown. One candidate is the proteasome, a nonlysosomal proteinase complex abundantly present in the cytosol. Proteasomes have several proteolytically active sites and are complexes of high relative molecular mass (Mr about 600K), consisting of about 20-30 subunits with Mrs between 15 and 30K. Here we show that at least one of these subunits is encoded by the mouse MHC in the region between the K locus and the MHC class II region, and inducible by interferon-gamma. This raises the intriguing possibility that the MHC encodes not only the MHC class I molecules themselves but also proteases involved in the formation of MHC-binding peptides.  相似文献   

6.
C E Day  P P Jones 《Nature》1983,302(5904):157-159
The invariant (Ii) chain of murine Ia antigens is associated with the intracellular but not the cell-surface forms of the A alpha:A beta and E alpha:E beta Ia complexes. Due to its unique subcellular localization, Ii has been postulated to play a part in the assembly or intracellular transport of the Ia alpha:beta complexes, which function in immune recognition. A more general role for Ii in the transport of other cell proteins has also been suggested. Because of the unusual subunit composition of Ia antigens and because the synthesis of alpha, beta and Ii chains is coordinately regulated, it was of interest to determine whether, like the alpha and beta chains, Ii is encoded by a gene in the I region of the H-2 histocompatibility complex. We report here the use of an Ii chain polymorphism present in Mus spretus to demonstrate that the gene for Ii is not linked to the H-2 complex. Thus, intracellular Ia antigens consist of the products of two linked genes and one unlinked gene.  相似文献   

7.
T lymphocytes expressing alpha beta receptors recognize antigenic peptide fragments bound to major histocompatibility complex class I or class II molecules present on the surface membranes of other cells. Peptide fragments are present in the two available HLA crystal structures and recent data indicate that peptide is required for the stable folding of the class I heavy chain and maintenance of its association with the class I light chain, beta 2-microglobulin (beta 2m), at physiological temperature. To explain how the exogenous peptide used to create targets for cytotoxic cells bearing CD8 antigen could associate with apparently peptide-filled extracellular class I molecules, we hypothesized that stable binding of exogenous peptide to mature class I molecules reflects either the replacement of previously bound peptide during the well documented beta 2m exchange process or the loading of 'empty' class I heavy chains dependent on the availability of excess beta 2m. In either case, free beta 2m should enhance peptide/class I binding. Using either isolated soluble class I molecules or living cells, we show here that free purified beta 2m markedly augments the generation of antigenic complexes capable of T-cell stimulation.  相似文献   

8.
T A Potter  T V Rajan  R F Dick  J A Bluestone 《Nature》1989,337(6202):73-75
The CD8 (Lyt 2) molecule is a phenotypic marker for T lymphocytes that recognize and react with major histocompatibility complex (MHC) class I molecules. Antibody blocking experiments and gene transfection studies indicate that CD8 binds to a determinant on MHC class I molecules on the target cells, facilitating interaction between effector T lymphocytes and the target cell. The CD8 molecule may also be involved in transmembrane signalling during T-cell activation. The existence of CD8- cytotoxic T lymphocytes (CTL) and class I-reactive CTL that are not inhibited by antibody to CD8 suggests that at least some CTL do not require the CD8 molecule to interact with and lyse target cells. We have recently demonstrated that cells transfected with an H-2Dd gene that carries a mutation at residue 227 are not killed by primary CTL8. Here we show that although this mutation abrogates recognition by primary CTL, it does not affect recognition by CD8-independent CTL, suggesting that residue 227 of class I molecules might contribute to a determinant that is the ligand of the CD8 molecule.  相似文献   

9.
H von Boehmer  K Hafen 《Nature》1986,320(6063):626-628
Treatment of fetal thymuses with 2-deoxyguanosine depletes these organs of many haematopoietic cells, and if such thymuses are transplanted into allogeneic athymic nude mice, intrathymic development of cytolytic T-lymphocyte precursors (CTL-P) occurs, including those which are specific for class I major histocompatibility complex (MHC) antigens expressed by the thymus epithelium. Thus, T cells from BALB/c (H-2d) nude mice transplanted with allogeneic C57BL/6 (H-2b) thymic epithelium can be stimulated in vitro to produce CTL specific for H-2b class I MHC antigens. We report here that thymocytes and lymph node T cells from such mice are responsive in mixed leukocyte reaction in the absence of exogenous growth factors, indicating that lack of tolerance is manifest at the level of CTL-P and proliferating T cells. We also show that T cells from such mice are tolerant to minor histocompatibility antigens of the thymus donor in the context of MHC antigens of the recipient. The results indicate that haematopoietic rather than epithelial cells tolerize CTL-P and that donor-type minor but not major histocompatability antigens can be presented in tolerogenic form by haematopoietic cells expressing recipient-type MHC antigens.  相似文献   

10.
O Weinberger  R N Germain  S J Burakoff 《Nature》1983,302(5907):429-431
Conventional antigens appear to be recognized by T lymphocytes only when associated with major histocompatibility complex (MHC) antigens. Using antigen-specific proliferation as a model for helper T lymphocytes, it has been demonstrated that Ly1+T cells recognize antigen presented in association with syngeneic Ia molecules. In contrast to responses to conventional antigens, however, a large number of studies have suggested that the stimulation of alloreactive Ly1+T cells, and helper T cells specific for allogeneic cytotoxic T lymphocyte (CTL) responses, involve the direct recognition of Ia alloantigens. For the generation of optimal allogeneic CTL activity it has been proposed that Ly1+T cells recognize allo-Ia antigens directly and provide help to pre-CTLs that respond to allo-H-2K and/or D determinants. Thus, the B6.C.H-2bm1 mutant (bm1, formerly referred to as Hz1), which is believed to consist of a substitution of two amino acids in the H-2Kb antigen, has presented a paradox, for it can stimulate strong mixed lymphocyte culture (MLC), graft versus host and CTL responses by T cells of H-2b haplotype mice in the apparent absence of any alloantigenic differences in the I region. We now present evidence that the stimulation of proliferative and helper T cells by the mutant B6.C.H-2bm1 results from the H-2Kba antigen being recognized in the context of syngeneic Ia determinants. Thus responses to both conventional antigens and allogeneic MHC gene products may proceed via the recognition of antigen in the context of self Ia molecules.  相似文献   

11.
Major histocompatibility complex (MHC) class I molecules present peptides derived from the endogenous protein pool to cytotoxic T lymphocytes, which can thus recognize intracellular antigen. This pathway may depend on a transporter (PSF1) to mediate entry of the cytosolic peptides into a pre-Golgi compartment where they bind to class I heavy chains and promote their stable assembly with beta 2-microglobulin. There is, however, only indirect support for this function of PSF1. Here we show that PSF1 is necessary for the efficient assembly of class I molecules and enables them to present a peptide epitope derived from endogenously synthesized viral antigen. Immunochemical and genetic data demonstrate that the PSF1 polypeptide is associated with a complementary transporter chain, which is polymorphic and is encoded by the PSF2 gene, which is closely linked to PSF1.  相似文献   

12.
S Krishna  P Benaroch  S Pillai 《Nature》1992,357(6374):164-167
Purified major histocompatibility complex (MHC) class I molecules have been studied at high resolution by X-ray crystallography; the structure is a complex of a single heavy chain, a beta 2-microglobulin light chain and a tightly bound peptide moiety. We show here that complete MHC class I molecules are post-translationally assembled into tetramers (made up of four heavy chains and four beta 2-microglobulin units) and that this tetrameric species is expressed on the cell surface. The multivalent tetrameric structure of class I molecules can be reconciled with models of T-cell activation that invoke antigen-receptor crosslinking, as opposed to models that depend on an allosteric change.  相似文献   

13.
T lymphocytes recognize antigens as peptide fragments associated with molecules encoded by the major histocompatibility complex (MHC) and expressed on the surface of antigen-presenting cells. In the thymus, T cells bearing alpha beta receptors that react with the MHC molecules expressed by radioresistant stromal elements are positively selected for maturation. In (A x B-->A) bone marrow chimaeras, T cells restricted to the MHC-A haplotype are positively selected, whereas MHC-B-reactive thymocytes are not. We investigated whether the introduction of particular thymic stromal elements bearing MHC-B molecules could alter the fate of B-reactive T cells in these (A x B-->A) chimaeras. Thymic epithelial cell (TEC) lines expressing H-2b were introduced by intrathymic injection into (H-2b/s-->H2s) bone marrow chimaeras and we measured their ability to generate H-2b-restricted cytotoxic T-lymphocytes (CTLs). We report here that one TEC line, 427.1, was able positively to select CTLs specific for influenza and vesicular stomatitis virus antigens in association with class I H-2b molecules. In addition, line 427.1 can process cytoplasmic proteins for presentation to H-2Kb- and H-2Db-restricted CTLs. Thus, a TEC line capable of normal class I MHC antigen processing and presentation in vitro can induce positive selection after intrathymic injection.  相似文献   

14.
Antigens are generally thought to be recognized by cytotoxic T lymphocytes as peptides in the context of class I major histocompatibility proteins complex, which are heterodimers of heavy chains noncovalently associated with beta 2-microglobulin (beta 2m). The highly polymorphic nature of the heavy chains and their resulting ability to present different sets of peptides has presumably evolved to allow potent immune responses against most pathogens. By contrast, the polymorphism of beta 2m is limited; seven alleles are known in the mouse and only one has been identified in humans. beta 2-Microglobulin was consequently thought to have only structural functions: namely, to ensure correct folding of class I molecules and their transport to the cell surface. Although beta 2m is not implicated directly in the formation of the peptide binding site, we report here that it participates in the selection of MHC class I molecule-associated peptides.  相似文献   

15.
Class I major histocompatibility complex (MHC) molecules function in the recognition of antigens by cytotoxic T lymphocytes (CTL). Although this biological role is firmly established and much has been learnt about their structure and polymorphic variation, little is known of the regions of class I molecules that are involved in functional interactions with components of the T-cell surface. Here we show that peptides derived from residues 98-113 of the alpha 2 domain of HLA-A2 specifically inhibit the recognition of target cells by many HLA-A2-specific CTL. In addition to identifying a region that is probably involved in binding the T-cell receptor these results raise the possibility that alloreactive CTL may recognize degraded fragments of class I histocompatibility antigens.  相似文献   

16.
A R Townsend  J Bastin  K Gould  G G Brownlee 《Nature》1986,324(6097):575-577
A surprising feature of most cytotoxic T lymphocytes (CTL) responding to influenza infection is that they recognize the unglycosylated (non-transmembrane) proteins of the virus, including the nucleoprotein. Recognition of cells that express nucleoprotein by CTL does not depend on a definite signal sequence within the protein, and the epitopes recognized can be defined with short synthetic peptides in vitro. Haemagglutinin (HA), the major transmembrane protein of the virus, is recognized by a minor population of CTL from infected mice. We have deleted the sequence coding for the N-terminal signal peptide from a complementary DNA encoding HA of the H1 subtype. The signal-deleted HA is detected with antibodies as a short-lived, unglycosylated, intracellular protein. However, CTL raised to the complete molecule recognize cells expressing the signal-deleted HA and vice versa. These results cast doubts on the assumption that CTL recognize the HA molecule only after its insertion into the plasma membrane.  相似文献   

17.
H C Bodmer  F M Gotch  A J McMichael 《Nature》1989,337(6208):653-655
Cytotoxic T lymphocytes (CTL) recognize protein antigens which have been processed by the target cell and then presented in association with the relevant class I molecule of the major histocompatibility complex (MHC). Short synthetic peptides, which are able to associate directly with target cells, may substitute for these processed fragments in stimulating antigen-specific CTL responses. Using this approach, a dominant HLA-A2-restricted epitope has previously been mapped to residues 58-68 of influenza A virus matrix protein. Here we report HLA-A2-restricted CTL which are also able to recognize this short synthetic peptide in association with HLA-Aw69, but which fail to recognize HLA-Aw69 expressing cells infected with influenza A virus. Furthermore, individuals possessing HLA-Aw69 who respond to influenza A virus, do not respond to M58-68. These results imply that the low response to this epitope on infection of HLA-Aw69 individuals with influenza A is due to failure of the naturally processed product of matrix protein to associate with Aw69.  相似文献   

18.
H Bodmer  G Ogg  F Gotch  A McMichael 《Nature》1989,342(6248):443-446
Most cytotoxic T lymphocytes (CTL) not only recognize epitopes of viral or other foreign proteins in association with class I major histocompatibility complex (MHC) molecules, but also recognize target cells sensitized with short synthetic peptides representing the epitopes. There is increasing evidence that these synthetic peptides associate with the class I molecule both at the cell surface and intracellularly. We have now investigated the effect of a monoclonal antibody specific for HLA-A2 and HLA-B17 (B57/58) molecules (antibody MA2.1)3 on the sensitization of target cells with peptide for lysis by HLA-A2-restricted CTL. Previously, anti-HLA class I monoclonal antibodies have been shown to inhibit the recognition of target cells, infected with influenza A virus, by virus-specific CTL. We find, however, that target cells treated with MA2.1 antibody can be sensitized with peptide for CTL lysis much more rapidly than untreated cells, or at greater than 100-fold lower peptide concentration than that required for sensitization of untreated cells. This implies that the antibody, which is believed to bind to one side of the peptide-binding groove, directly affects the binding of peptide to the HLA-A2 molecule at the cell surface.  相似文献   

19.
K Deres  H Schild  K H Wiesmüller  G Jung  H G Rammensee 《Nature》1989,342(6249):561-564
Cytotoxic T lymphocytes (CTL) constitute an essential part of the immune response against viral infections. Such CTL recognize peptides derived from viral proteins together with major histocompatibility complex (MHC) class I molecules on the surface of infected cells, and usually require in vivo priming with infectious virus. Here we report that synthetic viral peptides covalently linked to tripalmitoyl-S-glycerylcysteinyl-seryl-serine (P3CSS) can efficiently prime influenza-virus-specific CTL in vivo. These lipopeptides are able to induce the same high-affinity CTL as does the infectious virus. Our data are not only relevant to vaccine development, but also have a bearing on basic immune processes leading to the transition of virgin T cells to activated effector cells in vivo, and to antigen presentation by MHC class I molecules.  相似文献   

20.
Structural and evolutionary analysis of HLA-D-region products   总被引:4,自引:0,他引:4  
The major histocompatibility complex (MHC)--HLA in man and H-2 in mouse--encodes two classes of cell-surface antigens involved in the immune response. The amino acid sequences have been determined for a number of these molecules. Class I antigens, typified by the HLA-ABC antigens, are composed of a 43,000-molecular weight (MW) glycosylated transmembrane polypeptide with three external domains (alpha 1, alpha 2 and alpha 3), of which the one nearest the membrane (alpha 3) is associated with a 12,000-MW nonglycosylated polypeptide, beta 2-microglobulin. The HLA-D-region or class II antigens, DR, DC and SB, are composed of two glycosylated transmembrane polypeptides, of MWs 34,000 (alpha-chain) and 28,000 (beta-chain). Both chains have two external domains which presumably associate with each other, alpha 2, beta 2 being membrane proximal and alpha 1, beta 1 N-terminal and membrane distal. All four membrane-proximal domains (class I alpha 3, beta 2-microglobulin, class II alpha 2 and beta 2) have amino acid sequences that show significant similarities with immunoglobulin constant-region domains. This, together with the similarly placed internal disulphide bonds, suggests they might have an immunoglobulin-like structure (Fig. 1). We have now used computer graphics techniques to predict a detailed three-dimensional structure for the membrane-proximal domains of the class II antigens (alpha 2 and beta 2) based on the known coordinates of immunoglobulin constant domains (Fig. 2). The transmembrane regions of class II antigens have been modelled as two alpha-helices packed together. The proposed structure accounts for conservation of amino acids and leads to evolutionary predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号