首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alteration of ionic selectivity of a K+ channel by mutation of the H5 region   总被引:27,自引:0,他引:27  
A J Yool  T L Schwarz 《Nature》1991,349(6311):700-704
The high ionic selectivity of K+ channels is a unifying feature of this diverse class of membrane proteins. Though K+ channels differ widely in regulation and kinetics, physiological studies have suggested a common structure: a single file pore containing multiple ion-binding sites and having broader vestibules at both ends. We have used site-directed mutagenesis and single-channel recordings to identify a molecular region that influences ionic selectivity in a cloned A-type K+ channel from Drosophila. Single amino-acid substitutions in H5, the fifth hydrophobic region, enhanced the passage of NH4+ and Rb+, ions with diameters larger than K+, without compromising the ability of the channel to exclude the smaller cation, Na+. The mutations that substantially altered selectivity had little effect on the gating properties of the channel. We conclude that the H5 region is likely to line the pore of the K+ channel.  相似文献   

2.
Shi N  Ye S  Alam A  Chen L  Jiang Y 《Nature》2006,440(7083):570-574
Ion selectivity is one of the basic properties that define an ion channel. Most tetrameric cation channels, which include the K+, Ca2+, Na+ and cyclic nucleotide-gated channels, probably share a similar overall architecture in their ion-conduction pore, but the structural details that determine ion selection are different. Although K+ channel selectivity has been well studied from a structural perspective, little is known about the structure of other cation channels. Here we present crystal structures of the NaK channel from Bacillus cereus, a non-selective tetrameric cation channel, in its Na+- and K+-bound states at 2.4 A and 2.8 A resolution, respectively. The NaK channel shares high sequence homology and a similar overall structure with the bacterial KcsA K+ channel, but its selectivity filter adopts a different architecture. Unlike a K+ channel selectivity filter, which contains four equivalent K+-binding sites, the selectivity filter of the NaK channel preserves the two cation-binding sites equivalent to sites 3 and 4 of a K+ channel, whereas the region corresponding to sites 1 and 2 of a K+ channel becomes a vestibule in which ions can diffuse but not bind specifically. Functional analysis using an 86Rb flux assay shows that the NaK channel can conduct both Na+ and K+ ions. We conclude that the sequence of the NaK selectivity filter resembles that of a cyclic nucleotide-gated channel and its structure may represent that of a cyclic nucleotide-gated channel pore.  相似文献   

3.
Zhang X  Ren W  DeCaen P  Yan C  Tao X  Tang L  Wang J  Hasegawa K  Kumasaka T  He J  Wang J  Clapham DE  Yan N 《Nature》2012,486(7401):130-134
Voltage-gated sodium (Na(v)) channels are essential for the rapid depolarization of nerve and muscle, and are important drug targets. Determination of the structures of Na(v) channels will shed light on ion channel mechanisms and facilitate potential clinical applications. A family of bacterial Na(v) channels, exemplified by the Na(+)-selective channel of bacteria (NaChBac), provides a useful model system for structure-function analysis. Here we report the crystal structure of Na(v)Rh, a NaChBac orthologue from the marine alphaproteobacterium HIMB114 (Rickettsiales sp. HIMB114; denoted Rh), at 3.05?? resolution. The channel comprises an asymmetric tetramer. The carbonyl oxygen atoms of Thr?178 and Leu?179 constitute an inner site within the selectivity filter where a hydrated Ca(2+) resides in the crystal structure. The outer mouth of the Na(+) selectivity filter, defined by Ser?181 and Glu?183, is closed, as is the activation gate at the intracellular side of the pore. The voltage sensors adopt a depolarized conformation in which all the gating charges are exposed to the extracellular environment. We propose that Na(v)Rh is in an 'inactivated' conformation. Comparison of Na(v)Rh with Na(v)Ab reveals considerable conformational rearrangements that may underlie the electromechanical coupling mechanism of voltage-gated channels.  相似文献   

4.
R Coronado  R Latorre 《Nature》1982,298(5877):849-852
The ionic currents underlying the cardiac action potential are believed to be much more complex than those in nerve. During the cardiac action potential, various membrane channels control the flow of K+, Na+, Ca2+ and Cl- across the sarcolemma of cardiac muscle cells. Thus, it has become increasingly clear that a detailed knowledge of the mechanisms that activate (or inactivate) heart channels is required to understand cardiac excitability. We report here the use of planar lipid bilayer techniques to detect and characterize K+ and Cl- channels in purified heart sarcolemma membrane vesicles. We have identified four different types of channel on the basis of their selectivity, conductance and gating kinetics. We present in some detail the properties of a K+ channel and a Cl- channel. We have tentatively identified the K+ channel with the ix type of current found in Purkinje, myocardial ventricular and atrial fibres. The chloride channel might be related to the transient chloride current found in Purkinje fibres.  相似文献   

5.
Energetics of ion conduction through the K+ channel.   总被引:9,自引:0,他引:9  
S Bernèche  B Roux 《Nature》2001,414(6859):73-77
K+ channels are transmembrane proteins that are essential for the transmission of nerve impulses. The ability of these proteins to conduct K+ ions at levels near the limit of diffusion is traditionally described in terms of concerted mechanisms in which ion-channel attraction and ion-ion repulsion have compensating effects, as several ions are moving simultaneously in single file through the narrow pore. The efficiency of such a mechanism, however, relies on a delicate energy balance-the strong ion-channel attraction must be perfectly counterbalanced by the electrostatic ion-ion repulsion. To elucidate the mechanism of ion conduction at the atomic level, we performed molecular dynamics free energy simulations on the basis of the X-ray structure of the KcsA K+ channel. Here we find that ion conduction involves transitions between two main states, with two and three K+ ions occupying the selectivity filter, respectively; this process is reminiscent of the 'knock-on' mechanism proposed by Hodgkin and Keynes in 1955. The largest free energy barrier is on the order of 2-3 kcal mol-1, implying that the process of ion conduction is limited by diffusion. Ion-ion repulsion, although essential for rapid conduction, is shown to act only at very short distances. The calculations show also that the rapidly conducting pore is selective.  相似文献   

6.
Mechanism of ion permeation through calcium channels   总被引:27,自引:0,他引:27  
P Hess  R W Tsien 《Nature》1984,309(5967):453-456
Calcium channels carry out vital functions in a wide variety of excitable cells but they also face special challenges. In the medium outside the channel, Ca2+ ions are vastly outnumbered by other ions. Thus, the calcium channel must be extremely selective if it is to allow Ca2+ influx rather than a general cation influx. In fact, calcium channels show a much greater selectivity for Ca2+ than sodium channels do for Na+ despite the high flux that open Ca channels can support. Relatively little is known about the mechanism of ion permeation through Ca channels. Earlier models assumed ion independence or single-ion occupancy. Here we present evidence for a novel hypothesis of ion movement through Ca channels, based on measurements of Ca channel activity at the level of single cells or single channels. Our results indicate that under physiological conditions, the channel is occupied almost continually by one or more Ca2+ ions which, by electrostatic repulsion, guard the channel against permeation by other ions. On the other hand, repulsion between Ca2+ ions allows high throughput rates and tends to prevent saturation with calcium.  相似文献   

7.
Ion conduction pore is conserved among potassium channels.   总被引:15,自引:0,他引:15  
Z Lu  A M Klem  Y Ramu 《Nature》2001,413(6858):809-813
Potassium channels, a group of specialized membrane proteins, enable K+ ions to flow selectively across cell membranes. Transmembrane K+ currents underlie electrical signalling in neurons and other excitable cells. The atomic structure of a bacterial K+ channel pore has been solved by means of X-ray crystallography. To the extent that the prokaryotic pore is representative of other K+ channels, this landmark achievement has profound implications for our general understanding of K+ channels. But serious doubts have been raised concerning whether the prokaryotic K+ channel pore does actually represent those of eukaryotes. Here we have addressed this fundamental issue by substituting the prokaryotic pore into eukaryotic voltage-gated and inward-rectifier K+ channels. The resulting chimaeras retain the respective functional hallmarks of the eukaryotic channels, which indicates that the ion conduction pore is indeed conserved among K+ channels.  相似文献   

8.
I Baconguis  E Gouaux 《Nature》2012,489(7416):400-405
Acid-sensing ion channels (ASICs) are voltage-independent, amiloride-sensitive channels involved in diverse physiological processes ranging from nociception to taste. Despite the importance of ASICs in physiology, we know little about the mechanism of channel activation. Here we show that psalmotoxin activates non-selective and Na(+)-selective currents in chicken ASIC1a at pH?7.25 and 5.5, respectively. Crystal structures of ASIC1a-psalmotoxin complexes map the toxin binding site to the extracellular domain and show how toxin binding triggers an expansion of the extracellular vestibule and stabilization of the open channel pore. At pH?7.25 the pore is approximately 10?? in diameter, whereas at pH?5.5 the pore is largely hydrophobic and elliptical in cross-section with dimensions of approximately 5 by 7??, consistent with a barrier mechanism for ion selectivity. These studies define mechanisms for activation of ASICs, illuminate the basis for dynamic ion selectivity and provide the blueprints for new therapeutic agents.  相似文献   

9.
X-ray structure of a voltage-dependent K+ channel   总被引:24,自引:0,他引:24  
Jiang Y  Lee A  Chen J  Ruta V  Cadene M  Chait BT  MacKinnon R 《Nature》2003,423(6935):33-41
Voltage-dependent K+ channels are members of the family of voltage-dependent cation (K+, Na+ and Ca2+) channels that open and allow ion conduction in response to changes in cell membrane voltage. This form of gating underlies the generation of nerve and muscle action potentials, among other processes. Here we present the structure of KvAP, a voltage-dependent K+ channel from Aeropyrum pernix. We have determined a crystal structure of the full-length channel at a resolution of 3.2 A, and of the isolated voltage-sensor domain at 1.9 A, both in complex with monoclonal Fab fragments. The channel contains a central ion-conduction pore surrounded by voltage sensors, which form what we call 'voltage-sensor paddles'-hydrophobic, cationic, helix-turn-helix structures on the channel's outer perimeter. Flexible hinges suggest that the voltage-sensor paddles move in response to membrane voltage changes, carrying their positive charge across the membrane.  相似文献   

10.
S H Heinemann  H Terlau  W Stühmer  K Imoto  S Numa 《Nature》1992,356(6368):441-443
The sodium channel, one of the family of structurally homologous voltage-gated ion channels, differs from other members, such as the calcium and the potassium channels, in its high selectivity for Na+. This selectivity presumably reflects a distinct structure of its ion-conducting pore. We have recently identified two clusters of predominantly negatively charged amino-acid residues, located at equivalent positions in the four internal repeats of the sodium channel as the main determinants of sensitivity to the blockers tetrodotoxin and saxitoxin. All site-directed mutations reducing net negative charge at these positions also caused a marked decrease in single-channel conductance. Thus these two amino-acid clusters probably form part of the extracellular mouth and/or the pore wall of the sodium channel. We report here the effects on ion selectivity of replacing lysine at position 1,422 in repeat III and/or alanine at position 1,714 in repeat IV of rat sodium channel II (ref. 3), each located in one of the two clusters, by glutamic acid, which occurs at the equivalent positions in calcium channels. These amino-acid substitutions, unlike other substitutions in the adjacent regions, alter ion-selection properties of the sodium channel to resemble those of calcium channels. This result indicates that lysine 1,422 and alanine 1,714 are critical in determining the ion selectivity of the sodium channel, suggesting that these residues constitute part of the selectivity filter of the channel.  相似文献   

11.
Sokolov S  Scheuer T  Catterall WA 《Nature》2007,446(7131):76-78
Ion channelopathies are inherited diseases in which alterations in control of ion conductance through the central pore of ion channels impair cell function, leading to periodic paralysis, cardiac arrhythmia, renal failure, epilepsy, migraine and ataxia. Here we show that, in contrast with this well-established paradigm, three mutations in gating-charge-carrying arginine residues in an S4 segment that cause hypokalaemic periodic paralysis induce a hyperpolarization-activated cationic leak through the voltage sensor of the skeletal muscle Na(V)1.4 channel. This 'gating pore current' is active at the resting membrane potential and closed by depolarizations that activate the voltage sensor. It has similar permeability to Na+, K+ and Cs+, but the organic monovalent cations tetraethylammonium and N-methyl-D-glucamine are much less permeant. The inorganic divalent cations Ba2+, Ca2+ and Zn2+ are not detectably permeant and block the gating pore at millimolar concentrations. Our results reveal gating pore current in naturally occurring disease mutations of an ion channel and show a clear correlation between mutations that cause gating pore current and hypokalaemic periodic paralysis. This gain-of-function gating pore current would contribute in an important way to the dominantly inherited membrane depolarization, action potential failure, flaccid paralysis and cytopathology that are characteristic of hypokalaemic periodic paralysis. A survey of other ion channelopathies reveals numerous examples of mutations that would be expected to cause gating pore current, raising the possibility of a broader impact of gating pore current in ion channelopathies.  相似文献   

12.
Pentameric ligand-gated ion channels from the Cys-loop family mediate fast chemo-electrical transduction, but the mechanisms of ion permeation and gating of these membrane proteins remain elusive. Here we present the X-ray structure at 2.9 A resolution of the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel homologue (GLIC) at pH 4.6 in an apparently open conformation. This cationic channel is known to be permanently activated by protons. The structure is arranged as a funnel-shaped transmembrane pore widely open on the outer side and lined by hydrophobic residues. On the inner side, a 5 A constriction matches with rings of hydrophilic residues that are likely to contribute to the ionic selectivity. Structural comparison with ELIC, a bacterial homologue from Erwinia chrysanthemi solved in a presumed closed conformation, shows a wider pore where the narrow hydrophobic constriction found in ELIC is removed. Comparative analysis of GLIC and ELIC reveals, in concert, a rotation of each extracellular beta-sandwich domain as a rigid body, interface rearrangements, and a reorganization of the transmembrane domain, involving a tilt of the M2 and M3 alpha-helices away from the pore axis. These data are consistent with a model of pore opening based on both quaternary twist and tertiary deformation.  相似文献   

13.
Hattori M  Gouaux E 《Nature》2012,485(7397):207-212
P2X receptors are trimeric ATP-activated ion channels permeable to Na+, K+ and Ca2+. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body β-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.  相似文献   

14.
Two defining functional features of ion channels are ion selectivity and channel gating. Ion selectivity is generally considered an immutable property of the open channel structure, whereas gating involves transitions between open and closed channel states, typically without changes in ion selectivity. In store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels, the molecular mechanism of channel gating by the CRAC channel activator, stromal interaction molecule 1 (STIM1), remains unknown. CRAC channels are distinguished by a very high Ca(2+) selectivity and are instrumental in generating sustained intracellular calcium concentration elevations that are necessary for gene expression and effector function in many eukaryotic cells. Here we probe the central features of the STIM1 gating mechanism in the human CRAC channel protein, ORAI1, and identify V102, a residue located in the extracellular region of the pore, as a candidate for the channel gate. Mutations at V102 produce constitutively active CRAC channels that are open even in the absence of STIM1. Unexpectedly, although STIM1-free V102 mutant channels are not Ca(2+)-selective, their Ca(2+) selectivity is dose-dependently boosted by interactions with STIM1. Similar enhancement of Ca(2+) selectivity is also seen in wild-type ORAI1 channels by increasing the number of STIM1 activation domains that are directly tethered to ORAI1 channels, or by increasing the relative expression of full-length STIM1. Thus, exquisite Ca(2+) selectivity is not an intrinsic property of CRAC channels but rather a tuneable feature that is bestowed on otherwise non-selective ORAI1 channels by STIM1. Our results demonstrate that STIM1-mediated gating of CRAC channels occurs through an unusual mechanism in which permeation and gating are closely coupled.  相似文献   

15.
In excitable cells, voltage-gated sodium (Na(V)) channels activate to initiate action potentials and then undergo fast and slow inactivation processes that terminate their ionic conductance. Inactivation is a hallmark of Na(V) channel function and is critical for control of membrane excitability, but the structural basis for this process has remained elusive. Here we report crystallographic snapshots of the wild-type Na(V)Ab channel from Arcobacter butzleri captured in two potentially inactivated states at 3.2?? resolution. Compared to previous structures of Na(V)Ab channels with cysteine mutations in the pore-lining S6 helices (ref. 4), the S6 helices and the intracellular activation gate have undergone significant rearrangements: one pair of S6 helices has collapsed towards the central pore axis and the other S6 pair has moved outward to produce a striking dimer-of-dimers configuration. An increase in global structural asymmetry is observed throughout our wild-type Na(V)Ab models, reshaping the ion selectivity filter at the extracellular end of the pore, the central cavity and its residues that are analogous to the mammalian drug receptor site, and the lateral pore fenestrations. The voltage-sensing domains have also shifted around the perimeter of the pore module in wild-type Na(V)Ab, compared to the mutant channel, and local structural changes identify a conserved interaction network that connects distant molecular determinants involved in Na(V) channel gating and inactivation. These potential inactivated-state structures provide new insights into Na(V) channel gating and novel avenues to drug development and therapy for a range of debilitating Na(V) channelopathies.  相似文献   

16.
Payandeh J  Scheuer T  Zheng N  Catterall WA 《Nature》2011,475(7356):353-358
Voltage-gated sodium (Na(V)) channels initiate electrical signalling in excitable cells and are the molecular targets for drugs and disease mutations, but the structural basis for their voltage-dependent activation, ion selectivity and drug block is unknown. Here we report the crystal structure of a voltage-gated Na(+) channel from Arcobacter butzleri (NavAb) captured in a closed-pore conformation with four activated voltage sensors at 2.7?? resolution. The arginine gating charges make multiple hydrophilic interactions within the voltage sensor, including unanticipated hydrogen bonds to the protein backbone. Comparisons to previous open-pore potassium channel structures indicate that the voltage-sensor domains and the S4-S5 linkers dilate the central pore by pivoting together around a hinge at the base of the pore module. The NavAb selectivity filter is short, ~4.6?? wide, and water filled, with four acidic side chains surrounding the narrowest part of the ion conduction pathway. This unique structure presents a high-field-strength anionic coordination site, which confers Na(+) selectivity through partial dehydration via direct interaction with glutamate side chains. Fenestrations in the sides of the pore module are unexpectedly penetrated by fatty acyl chains that extend into the central cavity, and these portals are large enough for the entry of small, hydrophobic pore-blocking drugs. This structure provides the template for understanding electrical signalling in excitable cells and the actions of drugs used for pain, epilepsy and cardiac arrhythmia at the atomic level.  相似文献   

17.
C Miller  E Moczydlowski  R Latorre  M Phillips 《Nature》1985,313(6000):316-318
The recent development of techniques for recording currents through single ionic channels has led to the identification of a K+-specific channel that is activated by cytoplasmic Ca2+. The channel has complex properties, being activated by depolarizing voltages and having a voltage-sensitivity that is modulated by cytoplasmic Ca2+ levels. The conduction behaviour of the channel is also unusual, its high ionic selectivity being displayed simultaneously with a very high unitary conductance. Very little is known about the biochemistry of this channel, largely due to the lack of a suitable ligand for use as a biochemical probe for the channel. We describe here a protein inhibitor of single Ca2+-activated K+ channels of mammalian skeletal muscle. This inhibitor, a minor component of the venom of the Israeli scorpion, Leiurus quinquestriatus, reversibly blocks the large Ca2+-activated K+ channel in a simple biomolecular reaction. We have partially purified the active component, a basic protein of relative molecular mass (Mr) approximately 7,000.  相似文献   

18.
Ruta V  Jiang Y  Lee A  Chen J  MacKinnon R 《Nature》2003,422(6928):180-185
All living organisms use ion channels to regulate the transport of ions across cellular membranes. Certain ion channels are classed as voltage-dependent because they have a voltage-sensing structure that induces their pores to open in response to changes in the cell membrane voltage. Until recently, the voltage-dependent K+, Ca2+ and Na+ channels were regarded as a unique development of eukaryotic cells, adapted to accomplish specialized electrical signalling, as exemplified in neurons. Here we present the functional characterization of a voltage-dependent K+ (K(V)) channel from a hyperthermophilic archaebacterium from an oceanic thermal vent. This channel possesses all the functional attributes of classical neuronal K(V) channels. The conservation of function reflects structural conservation in the voltage sensor as revealed by specific, high-affinity interactions with tarantula venom toxins, which evolved to inhibit eukaryotic K(V) channels.  相似文献   

19.
Aqvist J  Luzhkov V 《Nature》2000,404(6780):881-884
Ion-selective channels enable the specific permeation of ions through cell membranes and provide the basis of several important biological functions; for example, electric signalling in the nervous system. Although a large amount of electrophysiological data is available, the molecular mechanisms by which these channels can mediate ion transport remain a significant unsolved problem. With the recently determined crystal structure of the representative K+ channel (KcsA) from Streptomyces lividans, it becomes possible to examine ion conduction pathways on a microscopic level. K+ channels utilize multi-ion conduction mechanisms, and the three-dimensional structure also shows several ions present in the channel. Here we report results from molecular dynamics free energy perturbation calculations that both establish the nature of the multiple ion conduction mechanism and yield the correct ion selectivity of the channel. By evaluating the energetics of all relevant occupancy states of the selectivity filter, we find that the favoured conduction pathway involves transitions only between two main states with a free difference of about 5 kcal mol(-1). Other putative permeation pathways can be excluded because they would involve states that are too high in energy.  相似文献   

20.
R MacKinnon 《Nature》1991,350(6315):232-235
The voltage-activated K+, Na+ and Ca2+ channels are responsible for the generation and propagation of electrical signals in cell membranes. The K+ channels are multimeric membrane proteins formed by the aggregation of an unknown number of independent subunits. By studying the interaction of a scorpion toxin with coexpressed wild-type and toxin-insensitive mutant Shaker K+ channels, the subunit stoichiometry can be determined. The Shaker K+ channel is found to have a tetrameric structure. This is consistent with the sequence relationship between a K+ channel and each of the four internally homologous repeats of Na+ and Ca2+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号