首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Andrews-Hanna JC  Phillips RJ  Zuber MT 《Nature》2007,446(7132):163-166
The Opportunity Mars Exploration Rover found evidence for groundwater activity in the Meridiani Planum region of Mars in the form of aeolian and fluvial sediments composed of sulphate-rich grains. These sediments appear to have experienced diagenetic modification in the presence of a fluctuating water table. In addition to the extensive secondary aqueous alteration, the primary grains themselves probably derive from earlier playa evaporites. Little is known, however, about the hydrologic processes responsible for this environmental history-particularly how such extensive evaporite deposits formed in the absence of a topographic basin. Here we investigate the origin of these deposits, in the context of the global hydrology of early Mars, using numerical simulations, and demonstrate that Meridiani is one of the few regions of currently exposed ancient crust predicted to have experienced significant groundwater upwelling and evaporation. The global groundwater flow would have been driven primarily by precipitation-induced recharge and evaporative loss, with the formation of the Tharsis volcanic rise possibly playing a role through the burial of aquifers and induced global deformation. These results suggest that the deposits formed as a result of sustained groundwater upwelling and evaporation, rather than ponding within an enclosed basin. The evaporite formation coincided with a transition to more arid conditions that increased the relative impact of a deep-seated, global-scale hydrology on the surface evolution.  相似文献   

2.
The Mars Exploration Rover Opportunity discovered sulphate-rich sedimentary rocks at Meridiani Planum on Mars, which are interpreted by McCollom and Hynek as altered volcanic rocks. However, their conclusions are derived from an incorrect representation of our depositional model, which is upheld by more recent Rover data. We contend that all the available data still support an aeolian and aqueous sedimentary origin for Meridiani bedrock.  相似文献   

3.
McCollom TM  Hynek BM 《Nature》2005,438(7071):1129-1131
Exposed bedrocks at Meridiani Planum on Mars display chemical and mineralogical evidence suggesting interaction with liquid water. On the basis of morphological observations as well as high abundances of haematite and sulphate minerals, the rocks have been interpreted as sediments that were deposited in a shallow body of briny water with subsequent evaporation leaving behind the sulphate minerals. The iron-sulphur mineralization at Meridiani has also been inferred to be analogous to that produced during oxidative weathering of metal sulphide minerals, such as occurs at acid mine drainage sites. Neither of these interpretations, however, is consistent with the chemical composition of the rocks. Here we propose an alternative model for diagenesis of Meridiani bedrock that involves deposition of volcanic ash followed by reaction with condensed sulphur dioxide- and water-bearing vapours emitted from fumaroles. This scenario does not require prolonged interaction with a standing body of surface water and may have occurred at high temperatures. Consequently, the model invokes an environment considerably less favourable for biological activity on Mars than previously proposed interpretations.  相似文献   

4.
Assessment of Mars Exploration Rover landing site predictions   总被引:1,自引:0,他引:1  
Comprehensive analyses of remote sensing data during the three-year effort to select the Mars Exploration Rover landing sites at Gusev crater and at Meridiani Planum correctly predicted the atmospheric density profile during entry and descent and the safe and trafficable surfaces explored by the two rovers. The Gusev crater site was correctly predicted to be a low-relief surface that was less rocky than the Viking landing sites but comparably dusty. A dark, low-albedo, flat plain composed of basaltic sand and haematite with very few rocks was expected and found at Meridiani Planum. These results argue that future efforts to select safe landing sites based on existing and acquired remote sensing data will be successful. In contrast, geological interpretations of the sites based on remote sensing data were less certain and less successful, which emphasizes the inherent ambiguities in understanding surface geology from remotely sensed data and the uncertainty in predicting exactly what materials will be available for study at a landing site.  相似文献   

5.
Chan MA  Beitler B  Parry WT  Ormö J  Komatsu G 《Nature》2004,429(6993):731-734
Recent exploration has revealed extensive geological evidence for a water-rich past in the shallow subsurface of Mars. Images of in situ and loose accumulations of abundant, haematite-rich spherical balls from the Mars Exploration Rover 'Opportunity' landing site at Meridiani Planum bear a striking resemblance to diagenetic (post-depositional), haematite-cemented concretions found in the Jurassic Navajo Sandstone of southern Utah. Here we compare the spherical concretions imaged on Mars to these terrestrial concretions, and investigate the implications for analogous groundwater-related formation mechanisms. The morphology, character and distribution of Navajo haematite concretions allow us to infer host-rock properties and fluid processes necessary for similar features to develop on Mars. We conclude that the formation of such spherical haematite concretions requires the presence of a permeable host rock, groundwater flow and a chemical reaction front.  相似文献   

6.
Hynek BM 《Nature》2004,431(7005):156-159
Grey haematite was recently detected in the Terra Meridiani region of Mars by the Thermal Emission Spectrometer onboard the Mars Global Surveyor spacecraft. The formation of haematite on Earth often requires liquid water to be present for long periods of time, making this an important target for deciphering the history of water on Mars. The Mars Exploration Rover Opportunity landed in Meridiani early in 2004 and has since discovered light-toned bedrock outcrops rich in chemical and textural signatures of long-term water interaction locally at the landing site. Here I use remote sensing data to show that the light-toned outcrops at the landing site are not a local phenomenon. Instead, they are observable throughout the haematite-bearing plains in both visible and thermal infrared remote sensing data. Moreover, the light-toned material outcrops around much of the margin and is mappable for hundreds of kilometres to the north, east and west of the plains. I infer that 3 x 10(5) km(2) of this material is exposed over 20 degrees of longitude, indicating the extended presence of surface or near-surface water over a large region of Mars.  相似文献   

7.
Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.  相似文献   

8.
Compositional mapping of Mars at the 100-metre scale with the Mars Odyssey Thermal Emission Imaging System (THEMIS) has revealed a wide diversity of igneous materials. Volcanic evolution produced compositions from low-silica basalts to high-silica dacite in the Syrtis Major caldera. The existence of dacite demonstrates that highly evolved lavas have been produced, at least locally, by magma evolution through fractional crystallization. Olivine basalts are observed on crater floors and in layers exposed in canyon walls up to 4.5 km beneath the surface. This vertical distribution suggests that olivine-rich lavas were emplaced at various times throughout the formation of the upper crust, with their growing inventory suggesting that such ultramafic (picritic) basalts may be relatively common. Quartz-bearing granitoid rocks have also been discovered, demonstrating that extreme differentiation has occurred. These observations show that the martian crust, while dominated by basalt, contains a diversity of igneous materials whose range in composition from picritic basalts to granitoids rivals that found on the Earth.  相似文献   

9.
Phyllosilicates on Mars and implications for early martian climate   总被引:1,自引:0,他引:1  
The recent identification of large deposits of sulphates by remote sensing and in situ observations has been considered evidence of the past presence of liquid water on Mars. Here we report the unambiguous detection of diverse phyllosilicates, a family of aqueous alteration products, on the basis of observations by the OMEGA imaging spectrometer on board the Mars Express spacecraft. These minerals are mainly associated with Noachian outcrops, which is consistent with an early active hydrological system, sustaining the long-term contact of igneous minerals with liquid water. We infer that the two main families of hydrated alteration products detected-phyllosilicates and sulphates--result from different formation processes. These occurred during two distinct climatic episodes: an early Noachian Mars, resulting in the formation of hydrated silicates, followed by a more acidic environment, in which sulphates formed.  相似文献   

10.
 因携带水相关地质过程及环境的丰富信息,进而与生命起源密切相关,行星盐类研究受到大量科研工作者的关注。好奇号登陆之后,火星盐类研究取得了一些新进展。例如,在着陆区泥岩中发现了黄钾铁矾;在泥岩及泥岩砂岩的不整合接触面发现了石膏脉;在风沉积及原位沉积岩中发现了硝酸盐。此外,通过遥感手段,还发现火星新出现的斜坡沟渠可能是由含高氯酸盐高浓卤水冲击形成的。这些新进展再次表明了盐类对于火星科学的重要性。结合已有研究,凝练了火星盐类研究存在的重要科学问题,展望了中国未来火星探测研究。  相似文献   

11.
利用岩芯、薄片、扫描电镜及压汞分析等测试手段,结合测井和地震资料,对查干凹陷苏红图组火山岩的储集特征进行了研究,明确了储集性能主控因素。研究表明,火山岩的主要储集空间为气孔、裂缝、溶蚀孔、溶蚀缝和微孔缝,玄武岩气孔、裂缝及溶蚀孔缝发育、分布广,为研究区主要的储集岩石类型,凝灰岩裂缝较发育,分布仅次于玄武岩,为研究区次要的储集岩石类型;火山岩期次越晚,原生孔、缝保存越好,爆发相-溢流相过渡相带和部分溢流相层段上部物性较好,气孔和裂缝的充填是火山岩物性变差的主要原因,构造缝及其伴生的风化淋滤、溶蚀作用极大地改善了火山岩的储集性能,火山岩矿物蚀变产生的黏土堵塞孔隙,使物性变差,同时使岩石的致密性变差,为后期的溶蚀改造创造了条件。  相似文献   

12.
Chevrier V  Poulet F  Bibring JP 《Nature》2007,448(7149):60-63
Images of geomorphological features that seem to have been produced by the action of liquid water have been considered evidence for wet surface conditions on early Mars. Moreover, the recent identification of large deposits of phyllosilicates, associated with the ancient Noachian terrains suggests long-timescale weathering of the primary basaltic crust by liquid water. It has been proposed that a greenhouse effect resulting from a carbon-dioxide-rich atmosphere sustained the temperate climate required to maintain liquid water on the martian surface during the Noachian. The apparent absence of carbonates and the low escape rates of carbon dioxide, however, are indicative of an early martian atmosphere with low levels of carbon dioxide. Here we investigate the geochemical conditions prevailing on the surface of Mars during the Noachian period using calculations of the aqueous equilibria of phyllosilicates. Our results show that Fe3+-rich phyllosilicates probably precipitated under weakly acidic to alkaline pH, an environment different from that of the following period, which was dominated by strongly acid weathering that led to the sulphate deposits identified on Mars. Thermodynamic calculations demonstrate that the oxidation state of the martian surface was already high, supporting early escape of hydrogen. Finally, equilibrium with carbonates implies that phyllosilicate precipitation occurs preferentially at a very low partial pressure of carbon dioxide. We suggest that the possible absence of Noachian carbonates more probably resulted from low levels of atmospheric carbon dioxide, rather than primary acidic conditions. Other greenhouse gases may therefore have played a part in sustaining a warm and wet climate on the early Mars.  相似文献   

13.
Phyllosilicates, a class of hydrous mineral first definitively identified on Mars by the OMEGA (Observatoire pour la Mineralogie, L'Eau, les Glaces et l'Activitié) instrument, preserve a record of the interaction of water with rocks on Mars. Global mapping showed that phyllosilicates are widespread but are apparently restricted to ancient terrains and a relatively narrow range of mineralogy (Fe/Mg and Al smectite clays). This was interpreted to indicate that phyllosilicate formation occurred during the Noachian (the earliest geological era of Mars), and that the conditions necessary for phyllosilicate formation (moderate to high pH and high water activity) were specific to surface environments during the earliest era of Mars's history. Here we report results from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) of phyllosilicate-rich regions. We expand the diversity of phyllosilicate mineralogy with the identification of kaolinite, chlorite and illite or muscovite, and a new class of hydrated silicate (hydrated silica). We observe diverse Fe/Mg-OH phyllosilicates and find that smectites such as nontronite and saponite are the most common, but chlorites are also present in some locations. Stratigraphic relationships in the Nili Fossae region show olivine-rich materials overlying phyllosilicate-bearing units, indicating the cessation of aqueous alteration before emplacement of the olivine-bearing unit. Hundreds of detections of Fe/Mg phyllosilicate in rims, ejecta and central peaks of craters in the southern highland Noachian cratered terrain indicate excavation of altered crust from depth. We also find phyllosilicate in sedimentary deposits clearly laid by water. These results point to a rich diversity of Noachian environments conducive to habitability.  相似文献   

14.
Ohmoto H  Watanabe Y  Kumazawa K 《Nature》2004,429(6990):395-399
It is generally thought that, in order to compensate for lower solar flux and maintain liquid oceans on the early Earth, methane must have been an important greenhouse gas before approximately 2.2 billion years (Gyr) ago. This is based upon a simple thermodynamic calculation that relates the absence of siderite (FeCO3) in some pre-2.2-Gyr palaeosols to atmospheric CO2 concentrations that would have been too low to have provided the necessary greenhouse effect. Using multi-dimensional thermodynamic analyses and geological evidence, we show here that the absence of siderite in palaeosols does not constrain atmospheric CO2 concentrations. Siderite is absent in many palaeosols (both pre- and post-2.2-Gyr in age) because the O2 concentrations and pH conditions in well-aerated soils have favoured the formation of ferric (Fe3+)-rich minerals, such as goethite, rather than siderite. Siderite, however, has formed throughout geological history in subsurface environments, such as euxinic seas, where anaerobic organisms created H2-rich conditions. The abundance of large, massive siderite-rich beds in pre-1.8-Gyr sedimentary sequences and their carbon isotope ratios indicate that the atmospheric CO2 concentration was more than 100 times greater than today, causing the rain and ocean waters to be more acidic than today. We therefore conclude that CO2 alone (without a significant contribution from methane) could have provided the necessary greenhouse effect to maintain liquid oceans on the early Earth.  相似文献   

15.
Tanaka KL 《Nature》2005,437(7061):991-994
Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (approximately 3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago.  相似文献   

16.
Anomalous 17O compositions in massive sulphate deposits on the Earth   总被引:5,自引:0,他引:5  
Bao H  Thiemens MH  Farquhar J  Campbell DA  Lee CC  Heine K  Loope DB 《Nature》2000,406(6792):176-178
The variation of delta 18O that results from nearly all physical, biological and chemical processes on the Earth is approximately twice as large as the variation of delta 17O. This so-called 'mass-dependent' fractionation is well documented in terrestrial minerals. Evidence for 'mass-independent' fractionation (delta 17O = delta 17O-0.52 delta 18O), where deviation from this tight relationship occurs, has so far been found only in meteoritic material and a few terrestrial atmospheric substances. In the rock record it is thought that oxygen isotopes have followed a mass-dependent relationship for at least the past 3.7 billion years, and no exception to this has been encountered for terrestrial solids. Here, however, we report oxygen-isotope values of two massive sulphate mineral deposits, which formed in surface environments on the Earth but show large isotopic anomalies (delta 17O up to 4.6%). These massive sulphate deposits are gypcretes from the central Namib Desert and the sulphate-bearing Miocene volcanic ash-beds in North America. The source of this isotope anomaly might be related to sulphur oxidation reactions in the atmosphere and therefore enable tracing of such oxidation. These findings also support the possibility of a chemical origin of variable isotope anomalies on other planets, such as Mars.  相似文献   

17.
The large-area coverage at a resolution of 10-20 metres per pixel in colour and three dimensions with the High Resolution Stereo Camera Experiment on the European Space Agency Mars Express Mission has made it possible to study the time-stratigraphic relationships of volcanic and glacial structures in unprecedented detail and give insight into the geological evolution of Mars. Here we show that calderas on five major volcanoes on Mars have undergone repeated activation and resurfacing during the last 20 per cent of martian history, with phases of activity as young as two million years, suggesting that the volcanoes are potentially still active today. Glacial deposits at the base of the Olympus Mons escarpment show evidence for repeated phases of activity as recently as about four million years ago. Morphological evidence is found that snow and ice deposition on the Olympus construct at elevations of more than 7,000 metres led to episodes of glacial activity at this height. Even now, water ice protected by an insulating layer of dust may be present at high altitudes on Olympus Mons.  相似文献   

18.
火星探测研究结果分析   总被引:1,自引:0,他引:1  
火星是地球的近邻,很多方面的特征与地球相似.有观点认为,火星是地球的未来,即地球经过长期演化,其内部机构、地表和空间环境可能会变成火星现在的状况.因而在与地球比较的基础上,开展火星探测和研究,不仅对于探索火星及其空间的奥秘,而且对于认识地球都有重要的意义.本文对空间飞行器所取得的有关火星的探测结果(包括火星内部结构和火星表面、火星大气、火星电离层和磁层,以及太阳风与火星的相互作用等)进行了分析和概述,内容涉及火星内部化学成分、火星岩石中的元素、火星表面地形和尘暴,火星大气的光化学过程、火星大气的季节变化和大气中的同位素,火星上过去全球尺度的磁场和现在的局域强磁场观测,火星全球尺度偶极磁场的可能反转,太阳风与火星电离层相互作用所形成的感应型磁层等科学问题.结合目前火星探测和研究的现状,对火星研究的主要科学问题和意义进行了简单描述.  相似文献   

19.
Wyatt MB  McSween HY 《Nature》2002,417(6886):263-266
Mineral abundances derived from the analysis of remotely sensed thermal emission data from Mars have been interpreted to indicate that the surface is composed of basalt (Surface Type 1) and andesite (Surface Type 2). The global distribution of these rock types is divided roughly along the planetary dichotomy which separates ancient, heavily cratered crust in the southern hemisphere (basalt) from younger lowland plains in the north (andesite). But the existence of such a large volume of andesite is difficult to reconcile with our present understanding of the geological evolution of Mars. Here we reinterpret martian surface rock lithologies using mineral abundances from previous work and new mineralogies derived from a spectral end-member set representing minerals common in unaltered and low-temperature aqueously altered basalts. Our results continue to indicate the dominance of unaltered basalt in the southern highlands, but reveal that the northern lowlands can be interpreted as weathered basalt as an alternative to andesite. The coincidence between locations of such altered basalt and a suggested northern ocean basin implies that lowland plains material may be composed of basalts weathered under submarine conditions or weathered basaltic sediments transported into this depocentre.  相似文献   

20.
The ubiquitous atmospheric dust on Mars is well mixed by periodic global dust storms, and such dust carries information about the environment in which it once formed and hence about the history of water on Mars. The Mars Exploration Rovers have permanent magnets to collect atmospheric dust for investigation by instruments on the rovers. Here we report results from M?ssbauer spectroscopy and X-ray fluorescence of dust particles captured from the martian atmosphere by the magnets. The dust on the magnets contains magnetite and olivine; this indicates a basaltic origin of the dust and shows that magnetite, not maghemite, is the mineral mainly responsible for the magnetic properties of the dust. Furthermore, the dust on the magnets contains some ferric oxides, probably including nanocrystalline phases, so some alteration or oxidation of the basaltic dust seems to have occurred. The presence of olivine indicates that liquid water did not play a dominant role in the processes that formed the atmospheric dust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号