首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reduced hepatic expression levels of bromodomain-containing protein 7 (BRD7) have been suggested to play a role in the development of glucose intolerance in obesity. However, the molecular mechanism by which BRD7 regulates glucose metabolism has remained unclear. Here, we show that BRD7 increases phosphorylation of glycogen synthase kinase 3β (GSK3β) in response to activation of the insulin receptor-signaling pathway shortly after insulin stimulation and the nutrient-sensing pathway after feeding. BRD7 mediates phosphorylation of GSK3β at the Serine 9 residue and this effect on GSK3β occurs even in the absence of AKT activity. Using both in vitro and in vivo models, we further demonstrate that BRD7 mediates phosphorylation of ribosomal protein S6 kinase (S6K) and leads to increased phosphorylation of the eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and, therefore, relieves its inhibition of the eukaryotic translation initiation factor 4E (eIF4E). However, the increase in phosphorylation of 4E-BP1 with BRD7 overexpression is blunted in the absence of AKT activity. In addition, using liver-specific BRD7 knockout (LBKO) mice, we show that BRD7 is required for mTORC1 activity on its downstream molecules. These findings show a novel basis for understanding the molecular dynamics of glucose metabolism and suggest the unique function of BRD7 in the regulation of glucose homeostasis.  相似文献   

2.
P2X4 and P2X7 receptors are ATP-gated ion channels that are co-expressed in alveolar epithelial type I cells. Both receptors are localized to the plasma membrane and partly associated with lipid rafts. Here we report on our study in an alveolar epithelial cell line of the molecular organization of P2X7R and P2X4R receptors and the effect of their knockdown. Native gel electrophoresis reveals three P2X7R complexes of ~430, ~580 and ~760 kDa. The latter two correspond exactly in size to signals of Cav-1, the structural protein of caveolae. Interestingly knockdown of P2rx7 affects protein levels, the intracellular distribution and the supramolecular organization of Cav-1 as well as of P2X4R, which is mainly detected in a complex of ~430 kDa. Our data suggest upregulation of P2X4R as a compensatory mechanism of P2X7R depletion.  相似文献   

3.
The mechanisms whereby G protein-coupled receptors (GPCR) activate signalling pathways involved in mRNA translation are ill-defined, in contrast to tyrosine kinase receptors (TKR). We compared a GPCR and a TKR, both endogenously expressed, for their ability to mediate phosphorylation of 70-kDa ribosomal S6 kinase p70S6K in primary rat Sertoli cells at two developmental stages. In proliferating cells stimulated with follicle-stimulating hormone (FSH), active p70S6K was phosphorylated on T389 and T421/S424, through cAMP-dependent kinase (PKA) and phosphatidyl-inositide-3 kinase (PI3K) antagonizing actions. In FSH-stimulated differentiating cells, active p70S6K was phosphorylated solely on T389, PKA and PI3K independently enhancing its activity. At both developmental stages, insulin-induced p70S6K regulation was consistent with reported data. Therefore, TKR and GPCR trigger distinct p70S6K active conformations. p70S6K developmental regulation was formalized in a dynamic mathematical model fitting the data, which led to experimentally inaccessible predictions on p70S6K phosphorylation rate.  相似文献   

4.
5.
The molecular mechanism responsible for cadmium-induced cell death in thyroid cancer cells (FRO) is unknown. We demonstrated that apoptosis of FRO cells induced by cadmium was concentration and time dependent. Cadmium caused the rapid elevation of intracellular calcium and induced phosphorylation of Akt, p53, JNK, ERK and p38. Inhibition of PI3K/Akt attenuated the cadmium-induced apoptosis, but the inhibition of JNK inhibitor, ERK or p38 aggravated it, indicating that activation of PI3K/Akt was a pro-apoptosis signal in response to cadmium treatment, whereas the activation of stress-activated protein kinase JNK, ERK and p38 functioned as survival signals to counteract the cadmium-induced apoptosis. Buffering of the calcium response attenuated mitochondrial impairment, recovered the cadmium-activated Akt, p53, JNK, ERK and p38, and subsequently blocked the apoptosis. These results suggested that apoptosis induced by cadmium in FRO cells was initiated by the rapid elevation of intracellular calcium, followed by calcium-mediated activation of PI3K/Akt and mitochondrial impairment. Received 28 February 2007; received after revision 2 April 2007; accepted 23 April 2007  相似文献   

6.
Accumulating findings indicate that nucleotides play an important role in microglia through P2 purinoceptors. P2 purinoceptors are divided into two families, ionotropic receptors (P2X) and metabotropic receptors (P2Y). P2X receptors (7 types; P2X1 – P2X7) contain intrinsic pores that open by binding with ATP. P2Y receptors (8 types; P2Y1, 2, 4, 6, 11, 12, 13 and 14) are activated by nucleotides and couple to intracellular second-messenger systems through heteromeric G-proteins. Nucleotides are released or leaked from non-excitable cells as well as neurons in physiological and pathophysiological conditions. Microglia express many types of P2 purinoceptors and are known as resident macrophages in the CNS. ATP and other nucleotides work as ‘warning molecules’ especially through activating microglia in pathophysiological conditions. Microglia play a key role in neuropathic pain, chemotaxis and phagocytosis through nucleotide-evoked activation of P2X4, P2Y12 and P2Y6 receptors, respectively. These findings indicate that extracellular nucleotides are important players in the central stage of microglial function. Received 19 April 2008; received after revision 20 May 2008; accepted 23 May 2008  相似文献   

7.
8.
Alterations in synaptic transmission within the spinal cord dorsal horn play a key role in the development of pathological pain. While N-methyl-D-aspartate (NMDA) receptors and activity-dependent synaptic plasticity have been the focus of research for many years, recent evidence attributes very specific functions to inhibitory glycinergic and γ-aminobutyric acid (GABA)-ergic neurotransmission in the generation of inflammatory and neuropathic pain. The central component of inflammatory pain originates from a disinhibition of dorsal horn neurons, which are relieved from glycinergic neurotransmission by the inflammatory mediator prostaglandin E2 (PGE2). PGE2 activates prostaglandin E receptors of the EP2 subtype and leads to a protein kinase A-dependent phosphorylation and inhibition of glycine receptors containing the α3 subunit (GlyRα3). This GlyRα3 is distinctly expressed in the superficial dorsal horn, where nociceptive afferents terminate. Other but probably very similar disinhibitory mechanisms may well contribute to abnormal pain occurring after peripheral nerve injury.Received 11 March 2005; received after revision 1 April 2005; accepted 19 April 2005  相似文献   

9.
The effect of pentobarbital was studied in a mixed population of nerve and glial cells dissociated from brains of 7-day chick embryos and maintained in culture. Pentobarbital-Na was added in various concentrations ranging from 5 X 10(-5) M to 1 X 10(-3) M. The neuronal density was monitored by counting the neurons, neuronal identity was established by staining for Nissl Bodies and acetylcholinesterase. Over a culture period of 3 weeks, it was found that the barbiturate exerts a preferential dose-dependent cytotoxic effect on neurons.  相似文献   

10.
The secreted protease proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to low-density lipid (LDL) receptor family members LDLR, very low density lipoprotein receptor (VLDLR) and apolipoprotein receptor 2 (ApoER2), and promotes their degradation in intracellular acidic compartments. In the liver, LDLR is a major controller of blood LDL levels, whereas VLDLR and ApoER2 in the brain mediate Reelin signaling, a critical pathway for proper development of the nervous system. Expression level of PCSK9 in the brain is highest in the cerebellum during perinatal development, but is also increased in the adult brain after ischemia. The mechanism of PCSK9 function and its involvement in neuronal apoptosis is poorly understood. We show here that RNAi-mediated knockdown of PCSK9 significantly reduced the death of potassium-deprived cerebellar granule neurons (CGN), as shown by reduced levels of nuclear phosphorylated c-Jun and activated caspase-3, as well as condensed apoptotic nuclei. ApoER2 protein levels were increased in PCSK9 RNAi cells. Knockdown of ApoER2 but not of VLDLR was sufficient to reverse the protection provided by PCSK9 RNAi, suggesting that proapoptotic signaling of PCSK9 is mediated by altered ApoER2 function. Pharmacological inhibition of signaling pathways associated with lipoprotein receptors suggested that PCSK9 regulates neuronal apoptosis independently of NMDA receptor function but in concert with ERK and JNK signaling pathways. PCSK9 RNAi also reduced staurosporine-induced CGN apoptosis and axonal degeneration in the nerve growth factor-deprived dorsal root ganglion neurons. We conclude that PCSK9 potentiates neuronal apoptosis via modulation of ApoER2 levels and related anti-apoptotic signaling pathways.  相似文献   

11.
Statins may exert beneficial effects on Alzheimer’s disease (AD) patients. Based on the antineoplastic and apoptotic effects of statins in a number of cell types, we hypothesized that statins may be able to protect neurons by controlling the regulation of cell cycle and/or apoptosis. A growing body of evidence indicates that neurodegeneration involves the cell-cycle activation in postmitotic neurons. Failure of cell-cycle control is not restricted to neurons in AD patients, but occurs in peripheral cells as well. For these reasons, we studied the role of simvastatin (SIM) on cell survival/death in lymphoblasts from AD patients. We report here that SIM induces apoptosis in AD lymphoblasts deprived of serum. SIM interacts with PI3K/Akt and ERK1/2 signaling pathways thereby decreasing the serum withdrawal-enhanced levels of the CDK inhibitor p21Cip1 (p21) and restoring the vulnerability of AD cells to trophic factor deprivation.  相似文献   

12.
Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a minor lipid of the inner leaflet of the plasma membrane that controls the activity of numerous proteins and serves as a source of second messengers. This multifunctionality of PI(4,5)P2 relies on mechanisms ensuring transient appearance of PI(4,5)P2 clusters in the plasma membrane. One such mechanism involves phosphorylation of PI(4)P to PI(4,5)P2 by the type I phosphatidylinositol-4-phosphate 5-kinases (PIP5KI) at discrete membrane locations coupled with PI(4)P delivery/synthesis at the plasma membrane. Simultaneously, both PI(4)P and PI(4,5)P2 participate in anchoring PIP5KI at the plasma membrane via electrostatic bonds. PIP5KI isoforms are also selectively recruited and activated at the plasma membrane by Rac1, talin, or AP-2 to generate PI(4,5)P2 in ruffles and lamellipodia, focal contacts, and clathrin-coated pits. In addition, PI(4,5)P2 can accumulate at sphingolipid/cholesterol-based rafts following activation of distinct membrane receptors or be sequestered in a reversible manner due to electrostatic constrains posed by proteins like MARCKS.  相似文献   

13.
目的通过胰岛素和磷脂酰肌醇-3激酶(P13K)抑制剂渥曼青霉素(wortmannin)对P13K/丝氨酸苏氨酸蛋白激酶(P13K/Akt)信号通路的激活和抑制作用,观察P13K/Akt信号通路对海马神经元β-淀粉样前体蛋白裂解酶1(BACEl)mRNA水平表达的影响。方法20只sD大鼠随机分为空白对照组、假手术组、胰岛素组和渥曼青霉素组,海马立体定向注射胰岛素和P13K抑制剂渥曼青霉素。逆转录一聚合酶链反应(RT-PCR)检测P13K/Akt信号传导下游蛋白Akt以及BACEImRNA水平。结果注射胰岛素的海马P13K信号通路下游信号分子:AktmRNA表达上调(分别较空白和阴性对照组P=0.047,P=0.002),而BACElmRNA表达下调(分别较空白和阴性对照组P=0.004,P=0.01)。渥曼青霉素组的P13K下游信号分子AktmRNA表达明显被抑制(分别较空白和阴性对照组P=0.002,P=0.039),同时BACEImRNA的表达较对照组上调(分别较空白和阴性对照组P=0.039,P=0.018)。结论胰岛素信号通路P13K/AM可以调节BACEl的转录水平参与阿尔茨海默病的发病机制。  相似文献   

14.
The E5 oncoprotein of human papillomavirus (HPV) 16 plays an important role in early cervical carcinogenesis. Vascular endothelial growth factor (VEGF) plays a central role in switching on the angiogenic phenotype during early cervical carcinogenesis. However, the relationship between E5 and VEGF has not previously been examined. To clarify the regulatory role of E5 in VEGF expression, we transferred the E5 gene into various cell types. E5 increased VEGF expression. The addition of epidermal growth factor receptor (EGFR) inhibitor significantly suppressed VEGF expression, demonstrating that E5 stimulates VEGF expression through the activation of EGFR. E5-mediated EGFR activation was accompanied by phosphorylation of Akt and ERK1/2, which are also involved in VEGF expression. Furthermore, the mRNA stability of VEGF was not affected by E5, but VEGF promoter activity could be modulated by inhibitors of the EGFR, MEK-ERK1/2 and PI3K/Akt pathways in E5-expressing cells. Collectively, these novel results suggest that HPV 16 E5 increases VEGF expression by activating EGFR, MEK/ERK1/2 and PI3K/Akt. Received 23 November 2005; received after revision 10 January 2006; accepted 9 February 2006  相似文献   

15.
Ethanol impairs insulin-stimulated survival and mitochondrial function in immature proliferating neuronal cells due to marked inhibition of downstream signaling through P13 kinase. The present study demonstrates that, in contrast to immature neuronal cells, the major adverse effect of chronic ethanol exposure (50 mM) in post-mitotic rat cerebellar granule neurons is to inhibit insulin-stimulated mitochondrial function (MTT activity, MitoTracker Red fluorescence, and cytochrome oxidase immunoreactivity). Ethanol-impaired mitochondrial function was associated with increased expression of the p53 and CD95 pro-apoptosis genes, reduced Calcein AM retention (a measure of membrane integrity), increased SYTOX Green and propidium iodide uptake (indices of membrane permeability), and increased oxidant production (dihydrorosamine fluorescence and H2O2 generation). The findings of reduced membrane integrity and mitochondrial function in short-term (24 h) ethanol-exposed neurons indicate that these adverse effects of ethanol can develop rapidly and do not require chronic neurotoxic injury. A role for caspase activation as a mediator of impaired mitochondrial function was demonstrated by the partial rescue observed in cells that were pre-treated with broad-spectrum caspase inhibitors. Finally, we obtained evidence that the inhibitory effects of ethanol on mitochondrial function and membrane integrity were greater in insulin-stimulated compared with nerve growth factor-stimulated cultures. These observations suggest that activation of insulin-independent signaling pathways, or the use of insulin sensitizer agents that enhance insulin signaling may help preserve viability and function in neurons injured by gestational exposure to ethanol.  相似文献   

16.
CDK5 is a serine/threonine kinase that is involved in the normal function of the adult brain and plays a role in neurotransmission and synaptic plasticity. However, its over-regulation has been associated with Tau hyperphosphorylation and cognitive deficits. Our previous studies have demonstrated that CDK5 targeting using shRNA-miR provides neuroprotection and prevents cognitive deficits. Dendritic spine morphogenesis and forms of long-term synaptic plasticity—such as long-term potentiation (LTP)—have been proposed as essential processes of neuroplasticity. However, whether CDK5 participates in these processes remains controversial and depends on the experimental model. Using wild-type mice that received injections of CDK5 shRNA-miR in CA1 showed an increased LTP and recovered the PPF in deficient LTP of APPswe/PS1Δ9 transgenic mice. On mature hippocampal neurons CDK5, shRNA-miR for 12 days induced increased dendritic protrusion morphogenesis, which was dependent on Rac activity. In addition, silencing of CDK5 increased BDNF expression, temporarily increased phosphorylation of CaMKII, ERK, and CREB; and facilitated calcium signaling in neurites. Together, our data suggest that CDK5 downregulation induces synaptic plasticity in mature neurons involving Ca2+ signaling and BDNF/CREB activation.  相似文献   

17.
Activation of δ-opioid receptors (DOR) attenuates anoxic K+ leakage and protects cortical neurons from anoxic insults by inhibiting Na+ influx. It is unknown, however, which pathway(s) that mediates the Na+ influx is the target of DOR signal. In the present work, we found that, in the cortex, (1) DOR protection was largely dependent on the inhibition of anoxic Na+ influxes mediated by voltage-gated Na+ channels; (2) DOR activation inhibited Na+ influx mediated by ionotropic glutamate N-methyl-D-aspartate (NMDA) receptors, but not that by non-NMDA receptors, although both played a role in anoxic K+ derangement; and (3) DOR activation had little effect on Na+/Ca2+ exchanger-based response to anoxia. We conclude that DOR activation attenuates anoxic K+ derangement by restricting Na+ influx mediated by Na+ channels and NMDA receptors, and that non-NMDA receptors and Na+/Ca2+ exchangers, although involved in anoxic K+ derangement in certain degrees, are less likely the targets of DOR signal. Received 26 November 2008; received after revision 26 December 2008; accepted 13 January 2009  相似文献   

18.
The steel factor (SLF) and c-Kit growth factor/receptor pair are key molecules governing mast cell development and survival. SLF is expressed on stromal cells as a membrane-bound molecule (mSLF) which can be cleaved by proteases to release a soluble form (sSLF). We investigated the importance of phospholipase C (PLC) activation in mast cells stimulated by sSLF and mSLF. PLC antagonists U73122, neomycin sulfate and oleic acid inhibited mast cell thymidine incorporation stimulated by mSLF, but not by sSLF. These antagonists suppressed sSLF-induced Ca2+ transients but did not significantly interfere with c-Kit phosphorylation or PLC-gamma2 recruitment. p85, the regulatory subunit of phosphatidylinositol 3-kinase (PI3-kinase), was found to be efficiently recruited to c-Kit following stimulation by sSLF or mSLF. However PKB/Akt, a kinase activated by PI3-kinase products, was phosphorylated following sSLF stimulation, but not with mSLF. Taken together, these studies demonstrate the importance of PLC activation by mSLF in supporting mast cells.  相似文献   

19.
Endothelial cells release ATP in response to fluid shear stress, which activates purinergic (P2) receptor-mediated signaling molecules including endothelial nitric oxide (eNOS), a regulator of vascular tone. While P2 receptor-mediated signaling in the vasculature is well studied, the role of P2Y2 receptors in shear stress-associated endothelial cell alignment, cytoskeletal alterations, and wound repair remains ill defined. To address these aspects, human umbilical vein endothelial cell (HUVEC) monolayers were cultured on gelatin-coated dishes and subjected to a shear stress of 1 Pa. HUVECs exposed to either P2Y2 receptor antagonists or siRNA showed impaired fluid shear stress-induced cell alignment, and actin stress fiber formation as early as 6 h. Similarly, when compared to cells expressing the P2Y2 Arg-Gly-Asp (RGD) wild-type receptors, HUVECs transiently expressing the P2Y2 Arg-Gly-Glu (RGE) mutant receptors showed reduced cell alignment and actin stress fiber formation in response to shear stress as well as to P2Y2 receptor agonists in static cultures. Additionally, we observed reduced shear stress-induced phosphorylation of focal adhesion kinase (Y397), and cofilin-1 (S3) with receptor knockdown as well as in cells expressing the P2Y2 RGE mutant receptors. Consistent with the role of P2Y2 receptors in vasodilation, receptor knockdown and overexpression of P2Y2 RGE mutant receptors reduced shear stress-induced phosphorylation of AKT (S473), and eNOS (S1177). Furthermore, in a scratched wound assay, shear stress-induced cell migration was reduced by both pharmacological inhibition and receptor knockdown. Together, our results suggest a novel role for P2Y2 receptor in shear stress-induced cytoskeletal alterations in HUVECs.  相似文献   

20.
Lanthanum (La3+) inhibits the Ca-pump of the red cell by arresting the protein in a phosphorylated form (PI). Similar La3+ concentrations are required to increase the amount of PI and to stop PI-decay. In the presence of La3+ phosphorylation becomes insensitive to Mg2+. PI made in the presence of Mg2+ is not prevented from decaying by subsequent addition of La3+, whereas that made in the absence of Mg2+ is. Taken together, these findings seem to indicate that La3+ blocks the transition between a 1st and a 2nd form of PI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号