首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
记单位圆|z|<1上正则、单叶且满足条件f(0)=f′(0)-1=0和的函数全体为St.本文中我们证明了下述定理,推广了一些已知的结果.作为定理1的一个推论,我们证明了Szego的一个猜测在St中成立. 定理1 设feS_t,λ>0,则等号仅限于Koebe函数f(z)成立,dn(α)为函数1/((1-x)~2)=1的第(n+1)项系数.定理2设feS_t,λ≥1,则当λ=1时,等号仅对于具有形式f(z)的函数成立; 当λ>1时,等号成立仅限于Koebe函数.这里,记号d_n(α)的意义同定理1.  相似文献   

2.
1916年,Bieberbach 猜想:设 S 是由在|z|<1内单叶且解析的函数f(z)=z a_2z~2 a_3z~3 …的全体所成的函数族。若 f∈S,则|a_n|≤n,对一切 n=2,3,…成立,对所有 n 等号仅当Koebe 函数 K(z)=z/(1-z)~2及其旋转成立。我们已经知道,当 n≤6时,Bieberbach 猜想是成立的。1974年,G、Ehrig 证明:若 f∈S,则存在一单调上升数列{K_n}(n≥7),且  相似文献   

3.
将|z|<1内满足 f(0)=0,f′(0)=1的单叶解析函数全体所成的类记为 S.设 f(z)=z a_nz~n∈S,1955年,Hayman 证明了:|a_n|/n=a_f≤1,等号仅限于 Koebe 函数成立。由此即知,对于每一个 f∈S,都存在 N(f),当 n>N(f)时,Bieberbach 猜测成立。于是产生了在什么条件下,存在与 f 无关的 N,当 n>N 时,有|a_n|≤n的问题。对  相似文献   

4.
1.设S是由在|z|<1内单叶且解析的函数 f(z)=z+a_2z~2+a_3z~3+…的全体所成的函数族。1916年,Bmberbach猜想:若f∈S,则|a_n|≤n对一切n=2,3,…成立,对所有n等号仅当Koebe函数K(z)=z/(1-z)~2及其旋转成立。我们已经知道,当n≤6时,Bieberbach猜想是成立的。1974年G.Ehrig证明:  相似文献   

5.
设f(z)=z+a_2z~2+a_3z~3+…∈S。Zalcman猜想|a_n~2-a_(2n-1)|≤(n-1)~2当n≥2时对函数类S成立,本文证明了当n=3时,Zalcman猜想是成立的。  相似文献   

6.
设∑′表示在区域1<|z|< ∞中单叶函数所组成的函数族,若G(ω)是g(z)∈∑′的反函数,那么,G(ω)在ω=∞。附近可展成我们知道,|B_1|≤|b_1|≤1,|B_2|=|b_2|≤2/3,Springer用变分法证明了和|B_3|≤1,并猜想等号当且仅当g(z)=z ηz~(-1),|η|=1时成立。Garabedinan and Schiffer利用变分法明了  相似文献   

7.
1、前言: 设f(z)=z+sum from n=2 to ∞(G_nz~n)是单位园|z|<1内的正则单叶函数,记这种函数之全体为S。Г.М.戈鲁辛证明有准确的估计:其中等号被kocbe函数所达到。 Jenkins.J.A补充(1)式而得到:  相似文献   

8.
在本文中我们证明了,若f(z)为单叶函数族K内的一函数,(w)为其逆并且(w)=w sum from n=1 to ∞ r_nw~n,则当n=8时,|r_n|1,等号成立仅当f(z)为f_0(z)=z/1-z及其族转的情形。在此之前,Libera,R.J.和Zlotkiewicz,E.J.考察了1n7时的情形。  相似文献   

9.
设 f(z)=z+(?)a_nz~n 在|z|<1内正则单叶,以 S 记其族,又记 S′={f∈S,α_2=0},S′(?)S,令 f(z)∈S′g(w)=w+(?)d_nw~n 是 f(z)的逆函数,张锦豪证明|d_3|≤1,|d_5|≤2,|d_7|≤5,|d_9|≤14,|d_(11)|≤42,|d_(13)|≤132并提出猜测:|d_(2N-1|≤(2N-2)!/N!(N-1) N=1,2,3…,(1)若 g(w)是奇函数,此猜测早为 l(?)wner 所证明,g(w)不一定是奇函数时,谭德邻,陈纪修证明当 N=8,9时,此猜测成立。本文利用 Grunsky 不等式和代数方法证明 N=10,11,12,13时,张锦豪的猜测是真的,并且为继续证明其它项系数,提供一个较简单的途径。  相似文献   

10.
1.设w=f(z)=α_1z α_2z~2 …在区域|z|<1中是正则的,对于|z|<1中任何两点z_1,z_2,成立着f(z_1)·f(z_2)≠1时,称这种f(z)为比霸巴霸函数,记这种f(z)的全体为B;假如关系f(z_1)f(z_2)≠-1常成立,那末f=(z)是一列到傑夫-——米林函数,记这种函数的全体为L。对于B中的f(z),健根斯和夏道行先後独立地证明了|f(z)|≤|z|/(-|Z|~2)~(1/2),并且研讨了等号成立的情况。当f(z)∈L  相似文献   

11.
若f(z)=z sum from n=2 to ∞(a_nZ~n)在单位圆|z|<1中正则单叶,本文证明:当|a_3|≤2.44时,|a_n|相似文献   

12.
引言设函数f(z)=z+sum from n=2 to ∞ a_nz~n (1)在图|z|>1内为正则单叶,命 S 表明这一函数族,比伯尔巴赫曾臆测对于任意的正整数 n 常有|a_n|≤n (2)当 a_n 全是实数,或 f(z)映射|z|<1成星形领域时,已成定理(1)(2)。里特勿得曾证明。|a_n|相似文献   

13.
设f(z)=z sum from n=2 to ∞(a_nz∈S,则Biberbach猜想|a_n|≤n对一切n成立。对n=4的Bieberbach猜想迄今为止已有多种证明,它们都可引出|a_4|依赖于|a_2|的估计式。目前最好的结果为  相似文献   

14.
设f(z)=z sum from n=2 to ∞ a_nz~n是单位园|z|<1内的正则单叶函数,以S记其族。龚升在中证明:若|a_2|<1.635则|a_n|相似文献   

15.
一、引言设 S 是在|z|<1内的单叶解析函数族,1974年 G.Ehrig 证明:若 f(z)=z ()a_nz~n∈S,则存在单调上升数列,{M_n},(n≥9)且()M_n=2.434,使对一切 n≥9,若|a_3|≤M_n,则|a_n|2.449,特别是当|a_3|≤1.71时|a_n|相似文献   

16.
设 W=f(z)是在单位圆|z|<|内标准化的正则单叶函数。它映照|z|<|于 W 平面上的象为D_f,记其全体为 S 若 D_f 是凸形领域就称 f(z)是|z|<|中的凸形函数。记其全体为 K,拉赫马诺夫证明了 f(z)εK当 n≠4时它的开始多项式(σ_nz)=z+∑~n_v=2 a_vz~v 在圆 z|<1/2中是单叶的。至于 n=4的情况已为单人所证明。本文证明了下面的结果定理1:设凸形奇函数为 f_2(z)εK.记其一切开始多项式为  相似文献   

17.
1.引言设S={f(z)=z+sum from n=2 to ∞a_■z~n.;f在D:|z|<1内解析、单叶}1916年Bieberbach提出猜想:若f∈S,则(1.1)|a.|≤n,n=2,3,…,最近,Louis de Branges证明了下面的重要结果,它蕴含着Bieberbach猜想。De Branges定理,若f∈S,且(1.2)log (f(z))/z=sum from k=1 to ∞c_(?)z~k,(z∈D)则,对于n=1,2,…,有(1.3)sum from k=1 to n k(n+1-k)|Ck|~2≤4 sum from k=1 to n (n+1-k)/k. 这个不等式实际上是1971年Milin的猜想[7](例如可参阅[4,P.155])  相似文献   

18.
在参考文献[1]中的定理2得出,设 f(z)=z sum from n=2 to ∞ a_nz~n (1) 在单位园|z1<|内正则,且满足条件 Re{f~2(z)/z~2f′(z)}≥1/2 (2) 则在|z|<1内f(z)是单叶的。我们将此种正则单叶函数的全体称为族D·当a_2=0时记为D_o。本文的目的,首先建立族D中函数f(z)的一般表达式,其次,用建立的一般表达式找出D_o中函数f(z)的|f(z)|,|f′(z)|的准确上下界,f(z)的星形和凸形界限,并对f(z)的系数及写像面积和长度问题作出一些估计。  相似文献   

19.
§1.引言 设w=f(z)=z+a_2z~2+……这个函数在单位圆|z|<1中是正则单叶的,它把单位圆照相成一个凸区域,那末函数f(z)叫做凸像函数。这种函数显然要满足条件 设w=f(z)=z+a_2z~2+……这个函数在单位圆|z|<1中是正则单叶的,对于任何rε(0,1),它把圆|z|=r照相成这样一个闭曲线,它包含点w=0,并且与每一条通过点w=0的直线相交成一个线段,那末函数f(z)叫做星像函数,这种函数显然要满足条件  相似文献   

20.
本文证明:如果f(z)是拓广复平面到自身使得f(0)=0,f(1)=1和f(∞)=∞的一个Q拟共形映照。则对任何r,|z|≤r |f(z)|≤r,成立|f(z)-z|≤4/π rK(1/1+r)K(r/1+r)·logQ,其中K(t)=integral from n=0 to 1(dx/((1-x~2)(1-tx~2))~(1/2)。它是夏道行的一个定理的拓广。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号