共查询到20条相似文献,搜索用时 46 毫秒
1.
As an important calcium-binding protein,calreticulin plays an important role in regulating calcium homeostasis in endoplasmic reticulum (ER) of plants.Here,we identified three loss-of-function mutants ofcalreticulin genes in Arabidopsis to demonstrate the function of calreticulin in response to calcium and salinity stresses.There are three genes encoding calreticulin in Arabidopsis,and they are named AtCRT1,2,and 3,respectively.We found that both single mutant of crt3 and double mutant of crtl crt2 were more sensitive to low calcium environment than wild-type Arabidopsis.Moreover,crt3 mutant showed more sensitivity to salt treatment at germination stage,but tolerance to salt stress at later stage compared with wild-type plant.However,there was no obvious growth difference in the mutant crt1 and crt2 compared with wild-type Arabidopsis under calcium and salt stresses.These results suggest that calreticulin functions in plant responses to calcium and salt stresses. 相似文献
2.
3.
4.
Previously, OsRAA1, an AtFPF1 homologue gene, was found to play an important role in modulating rice root development. In the current study, OsRAA1 was overexpressed in Arabidopsis, and the transgenic plants showed early flowering and elongated hypocotyl phenotypes as compared with the wild-type under white-light conditions. The hypocotyls of transgenic lines were twice as long as those of wild-type plants under red-light conditions but were indistinguishable from those of the wild-type under blue and far-red light and darkness. In addition, the phenotypes of AtFPF1 transgenic lines were similar to those of OsRAA1 transgenic lines. These results suggested that OsRAAI/AtFPF1 protein is involved in regulating flowering time and plays an important role in the inhibition of hypocotyl elongation under continuous red light. The functions were preserved during the evolution. 相似文献
5.
Identification and primary genetic analysis of Arabidopsis stomatal mutants in response to multiple stresses 总被引:6,自引:0,他引:6
SONG Yuwei KANG Yanli LIU Hao ZHAO Xiaoliang WANG Pengtao AN Guoyong ZHOU Yun MIAO Chen SONG Chunpeng 《科学通报(英文版)》2006,51(21):2586-2594
In response to variable environmental conditions, guard cells located in the leaf epidermis can integrate and cope with a multitude of complicated stimuli, thereby making stomata in an appro- priate state. However, many signaling components in guard cell signaling remain elusive. In our laboratory, a tool for non-invasive remote infrared thermal images was used to screen an ethyl methane sulfonate-mutagenized population for Arabidopsis stomatal response mutants under multiple stresses (ABA, H2O2, CO2, etc.). More than forty "hot" or "cold" mutants were isolated (above or below 0.5℃ in con- trast to normal plantlets). Identification and primary genetic analysis of these mutants show that they are monogenic recessive mutations and there exist distinct difference in stomata apertures compared to wild type. These mutants in response to various environmental stresses and hormones were comprehen- sively investigated, which enables us to further un- derstand the cross-talk in different signal transduction pathways. 相似文献
6.
Plant genomic DNA methylation in response to stresses:Potential applications and challenges in plant breeding 总被引:1,自引:0,他引:1
The plant genome can respond rapidly and dynamically to stress in a manner that overcomes the restrictions of a highly stable DNA sequence. Abiotic stresses such as chilling, planting density, rubbing, cutting, and successive rounds of subculture generally decrease the levels of DNA methylation. The opposite effect is seen for salt stress, and the effects of heavy-metal stress are species specific. Biotic stresses such as pathogenic infection can lead to two contrasting effects on the levels of methylation in plants: hypermethylation on the genome-wide level and hypomethylation of resistance-related genes. Both phenomena may contribute to the adaptation of plants to stress. Although heritable methylation patterns and phenotypic variations that arise in response to stress are of potential value for plant breeding, their exploitation presents great challenges. 相似文献
7.
In this paper, the role of the plasma membrane (PM) H+-ATPase in extracellular calmodulin (CaM)-promoted pollen germination and in tube growth of Arabidopsis thaliana was investigated. Pollen germination, pollen tube growth rate, free cytosolic Ca2+ concentration ([Ca2+]cyt) and Ca2+ channel activity in the PM of pollen cells were measured. In response to fusicoccin or CaM treatment, in vitro pollen germination and pollen tube growth rate, [Ca2+]cyt and activity of a hyperpolarization-activated Ca2+-permeable channel increased. Sodium vanadate inhibited the promotion of these parameters by extracellular CaM. The results suggest that H+-ATPase may be involved in extracellular CaM-regulated pollen germination and in tube growth by modulation of the hyperpolarization-activated Ca2+ channel in the PM of A. thaliana pollen cells. 相似文献
8.
9.
在拟南芥和水稻中Argonaute(AGO)蛋白是RNA介导的沉默复合体(RISC)的核心组分,在植物叶极性的分化方面具有重要的调节作用。实验根据AGO1基因序列设计一对特异引物,提取野生型拟南芥RNA作为模板,采用反转录PCR方法扩增出AGO1基因,并插入到克隆载体pGEM-T中。筛选鉴定后将AGO1连接到植物表达载体pBI121上,构建起植物表达载体pBI121-AGO1。并且利用农杆菌介导的方法转化拟南芥,通过抗性筛选,获得转基因植株。然后对转基因植株进行表型分析及AGO1蛋白的RT-PCR检测。通过对转基因拟南芥表达分析发现,与野生型拟南芥相比超表达AGO1蛋白的转基因拟南芥叶片明显呈锯齿状,说明AGO1基因影响拟南芥叶片发育。 相似文献
10.
文章采用不同浓度的甘露醇模拟干旱胁迫,以发芽率为筛选指标在拟南芥突变体库中筛选抗旱突变体,筛选出2株候选突变体,最终得到1株稳定突变体vem1,通过表型和生理生化鉴定,确定为抗旱突变体。该研究为抗旱基因克隆及功能分析奠定基础,对于揭示植物抗旱的分子机理具有重要的理论意义。 相似文献
11.
为探究拟南芥SnRK2.2和SnRK2.3基因对Cd胁迫响应的分子机制. 以野生型(WT)、双突变体SnRK2.2/2.3、过表达SnRK2.2和过表达SnRK2.3的转基因植物为材料,研究SnRK2.2和SnRK2.3基因与Cd胁迫响应的关系.发现过表达两个基因可以提高拟南芥对Cd的耐受性,表现为可以减少Cd、丙二醛(MDA)及活性氧(ROS)的累积量,增加抗氧化酶CAT、POD和SOD的活性. qRT PCR结果显示在Cd胁迫下,两种过表达植株中铁转运蛋白IRT1和转录因子FIT、bHLH038和bHLH039表达水平受到明显抑制,ABA合成相关基因AAO3和NCED3的表达量显著上调.在Cd胁迫下,两种过表达植株中ABA含量显著高于WT和双突变体. 以上结果表明:拟南芥遭受Cd胁迫时,SnRK2.2和SnRK2.3基因通过下调IRT1基因表达从而减少植物对Cd的吸收,同时通过增加内源ABA含量来缓解Cd对植物的毒害. 相似文献
12.
13.
在T-DNA插入突变体Salk_059463株系的群体中,筛选到两株雄性不育突变体,对TDNA序列上的一对引物进行PCR鉴定,结果表明:其基因组中没有T-DNA插入.遗传分析表明这两株雄性不育突变体由同一单个隐性基因控制,引起不育的主要原因是从花药发育的第8期开始,小孢子细胞质内容物逐渐减少直至消失,到花药发育的第12期,药室内的小孢子只剩下一个花粉壁空壳,故该突变体命名为opw(only pollen wall).利用图位克隆的方法对OPW基因进行了定位,结果表明OPW基因位于第二条染色体上分子标记T28M21和T3G21之间的12 kb区间内,该区间内一共有21个基因注释.通过克隆区间内的基因并测序发现opw-1突变体基因组中At2g40140基因编码序列的外显子在第289和第290个碱基之间插入了一个A碱基,而opw-2突变体基因组中At2g40140基因编码序列的外显子在第412和第413个碱基之间插入了一个T碱基,造成的编码序列移码使第424至第426碱基成为终止密码子,故At2g40140是编码OPW的候选基因. 相似文献
14.
Na+/H+ antiporters have been well documented to enhance plant salt tolerance by regulating cellular ion homeostasis. Here, a putative Na+/H+ antiporter gene homolog GmNHX2 from soybean was cloned and predicted to encode a protein of 534 amino acids with 10 putative transmembrane domains. GmNHX2 was expressed in all soybean plant tissues but enriched in roots and its expression was induced by NaCI and polyethylene glycol (PEG) treatments. GmNHX2 exhibits greater sequence similarity with LeNHX2 and AtNHX6 than that of AtNHX1 and AtSOS1. Although phylogenetic analysis clustered GmNHX2 with organellar (tonoplast and vesicles) antiporters, the GmNHX2-EGFP (enhanced green fluorescent protein) fusion protein was possibly localized in the plasma membrane or organelle membrane of transgenic plant cells, Furthermore, transgenic Arabidopsis plants expressing GmNHX2 were more tolerant to high NaCl concentrations during germination and seedling stages when compared with wild-type plants. These results suggest that GmNHX2 is a membrane Na+/H+ antiporter and may function to regulate ion homeostasis under salt stress. 相似文献
15.
16.
本研究针对广西地区分离到的致病性嗜水气单胞菌,开发区域定制化的灭活疫苗,以实现鱼病的有效预防和控制。首先,对斑点叉尾鮰源嗜水气单胞菌在LB培养基中的生长曲线,培养基的最适pH值,以及培养基中添加蔗糖对嗜水气单胞菌生长影响进行研究;随后探索嗜水气单胞菌灭活疫苗的制备方法,并在细胞水平和斑点叉尾鮰活体水平上研究疫苗的安全性,开展疫苗对斑点叉尾鮰的免疫保护实验。结果表明嗜水气单胞菌浓度与菌液OD值间具有较好的线性关系,其回归方程为y=2E-10x+0.1399,R2=0.975 4。用于培养嗜水气单胞菌的LB培养基最适pH值为7.0~7.5,且在培养基中添加蔗糖能显著促进嗜水气单胞菌的生长。研究制备的嗜水气单胞菌灭活疫苗在细胞水平和鱼活体水平均安全无毒,且对斑点叉尾鮰的免疫保护率可达到75%。据此,本研究初步建立起广西斑点叉尾鮰源嗜水气单胞菌灭活疫苗的制备工艺。 相似文献
17.
18.
Zhiyong Gao Hao Liu Hongliang Wang Ning Li Daojie Wang Yuwei Song Yuchen Miao Chunpeng Song 《科学通报(英文版)》2014,59(8):766-775
The autonomous Mutator(Mu)transposon in maize(Zea mays L.)lines 115F,330I,and 715D were crossed with inbred lines B73,Mo17,97108,and H9-21,M1were self-pollinated to establish the Mu insertion-mutagenized M2seeds pool and The M2plants encompassed a large amount of biological variation relevant to improving agronomy traits by observed in the field.Next we statistically analyzed these candidate mutants.Under drought stress,we screened seedlings at 3-leaf stage by using the infrared thermography,and successfully got 108 droughtinsensitive and 121 drought-sensitive candidate mutants from more than 38,000 lines,which temperature were significant different with others.These candidate mutants were primarily analyzed by infrared thermography,chlorophyll fluorescence,leaf water losing,photosynthetic characteristics,content of soluble sugars,soluble protein,and proline assay.The selected mutants were cloned by MuTAIL–PCR methods.Here we provide the better genetic materials for research on maize breeding for drought tolerance. 相似文献
19.
溶藻弧菌是引起广西等华南沿海地区海水养殖鱼类发生细菌性鱼病的主要致病菌之一,其引起的鱼病具有发病迅速、死亡率高、流行面广等特点,严重威胁着华南地区水产养殖业的健康可持续发展。着力发展操作便捷、成本低、耗时短、准确度高的水产致病菌快速检测技术,对于及早发现、确定病原,进而有的放矢地制定治疗方案来控制病原扩散、降低损失意义重大。在先前研究中,我们基于指数富集的配基系统进化技术(Systematic evolution of ligands by exponential enrichment technology,SELEX)筛选获得特异性识别卵形鲳鲹源溶藻弧菌的核酸适配体,本研究中我们基于核酸适配体VA8开展溶藻弧菌的快速检测诊断技术的研究,开发出一种新型的能够快速检测溶藻弧菌的核酸适配体吸附检测技术(Aptamer VA8-based enzyme-linked aptasorbent assay,VA8-ELASA),并对VA8-ELASA技术检测溶藻弧菌的特异性和灵敏性进行分析研究。VA8-ELASA技术可以用于溶藻弧菌的快速检测,具有特异性强、灵敏度高的特点。本研究基于核酸适配体VA8建立的新型核酸适配体吸附技术(VA8-ELASA),有望实现对广西卵形鲳鲹养殖中溶藻弧菌病的快速诊断、实时监控和有效预防。 相似文献
20.
本研究以模式植物拟南芥为材料,利用生理学和遗传学手段分析了盐胁迫下细胞自噬基因和活性氧(ROS)变化的相关性.结果表明野生型拟南芥Col-0在遭受盐胁迫处理3d表现了叶片漂白的症状并且会诱导ROS的产生和积累了大量的细胞死亡.荧光定量PCR实验表明盐胁迫会诱导细胞自噬相关基因的表达,细胞自噬参与了调控植物的防御机制来响应盐胁迫.进一步的实验表明拟南芥细胞自噬突变体atg2和atg5在遭受盐胁迫处理3d表现了更加严重的叶片漂白症状并且积累大量的细胞死亡和ROS.初步表明细胞自噬主要是通过调控ROS的产生来应答盐胁迫. 相似文献