共查询到19条相似文献,搜索用时 46 毫秒
1.
一种改进的粒子群优化算法 总被引:4,自引:2,他引:4
针对非线性优化问题讨论了一种基于迭代进程和适应值综合的自适应变异粒子群优化算法,该算法按照自适应变异方法从迭代进程上、以及从目标函数适应值上调整速度惯性因子,同时结合正态变异算子调整搜索方向。采用专用测试函数进行仿真测试分析,结果表明改进算法收敛,具有很高的搜索效率和求解精度。 相似文献
2.
求解约束优化问题的改进粒子群算法 总被引:2,自引:0,他引:2
针对高维复杂约束优化问题,提出了一种基于平滑技术和一维搜索的粒子群算法(NPSO)。该算法使粒子的飞行无记忆性,结合平滑函数和一维搜索重新生成停止进化粒子的位置,增强了在最优点附近的局部搜索能力;定义了不可行度阈值,利用此定义给出了新的粒子比较准则,该准则可以保留一部分性能较优的不可行解微粒,使微粒能快速的找到位于约束边界或附近的最优解;最后,为了扩大粒子的搜索范围,引进柯西变异算子。仿真结果表明,对于复杂约束优化问题,算法寻优性能优良,特别是对于超高维约束优化问题,该算法获得了更高精度的解。 相似文献
3.
带全局判据的改进量子粒子群优化算法 总被引:1,自引:0,他引:1
针对现有量子粒子群优化算法的多参数(≥5)优化问题易收敛到局部最优解、且无法判定优化结果全局性的问题,提出了带全局判据的改进量子粒子群优化算法。在惯性权重自适应调整的量子粒子群优化算法基础上,进行了粒子位置周期性变异,以及随粒子进化速度和聚集度变化的搜索范围变异。依据粒子聚集度大小,建立了判定优化结果全局性的全局收敛判据。以典型标准函数和乘波体外形多参数优化问题为算例,验证了改进算法和全局判据的可靠性。结果表明,改进算法的全局搜索能力明显提高,优化结果真实可靠,全局判据实用性强。 相似文献
4.
一种快速收敛的改进粒子群优化算法 总被引:2,自引:0,他引:2
采用离散线性系统的状态方程,根据系统稳定性理论,推出了保证牡子群优化算法收敛性的参数设置压域。在收敛性理论分析的基础上,提出了一种快速收敛的改进粒子群优化算法,它是基于二阶系统按最佳胆尼比的思恕来设定粒子群速度更新公式中的惯性权重。通过标准测试函数的性能测试,验证了改进粒子群优化算法的收敛性和快速性,并和惯性权重线性递减的标准粒子群优化算法进行了比较。仿真结果表明,该算法具有可靠的收敛性能和更快的收敛速度。 相似文献
5.
6.
粒子群优化(particle swarm optimization, PSO)算法基本思想是试图通过模拟鸟群觅食中的迁徙和聚集等行为获得连续非线性函数的最佳值,其仿生算法产生于对鸟群寻食过程中飞行方向与飞行速度等的隐喻。近年对粒子群算法经典算法的研究,虽然在速度及精度上有所改进,但由于缺乏细致化仿生(precise bionic metaphor, PBM),改进效果并不太明显。通过在PSO算法中引入飞鸟寻食细致化行为特征隐喻,即在算法中同时导入满意粒子局地细致化寻优和探索粒子随机寻优过程,进而提出了一种新的基于细致化仿生的改进PSO算法;对改进算法和经典算法进行了性能比较,结果显示所提算法在收敛速度和求解精度方面较经典算法有很大程度的改善。 相似文献
7.
多邻域改进粒子群算法 总被引:4,自引:1,他引:4
为了改进标准粒子群算法的性能,提出了多邻域改进粒子群算法。算法提出了一种较为简单的多邻域拓扑方案,对速度惯性权重的更新策略进行了改进,引入了速度和搜索区间限制算法。经过对经典测试函数的计算测试,算法表现出良好的复杂问题求解能力。最后,针对多目标优化问题,给出了多目标应用在粒子群算法中的处理方法,并对经典的5维优化和Golinski 减速器设计问题进行了求解,通过数据比对,证明了算法性能远优于现有的一些算法。 相似文献
8.
针对标准粒子群优化算法初期收敛速度快,后期容易陷入早熟收敛,局部寻优,全局搜索能力差等缺点,提出了一种新的鱼群-粒子群优化算法(AF-PSO)。引入拥挤因子δ和马尔可夫链,将鱼群算法加入到粒子群优化算法中,通过计算拥挤因子,来更新速度模型,使其在觅食,聚群,追尾,随机4种模态下进行切换。仿真结果表明了所提出的AF-PSO算法的综合性能优于其他改进的PSO算法。为进一步说明算法的实用性,将AF-PSO算法成功应用于输油管道泄露数据的聚类分析上。实验结果表明基于AF-PSO的K-means算法性能是优于其他聚类算法。 相似文献
9.
10.
提出一种基于差分演化的改进多目标粒子群优化算法来求解多目标优化问题。算法通过对Pareto最优解集的差分演化来增加Pareto解集的多样挫;通过循环拥挤距离采控制归档集中非劣解的分布.提高对种群空间的均匀采样;采用一种新的多目标适应值轮盘睹法选择粒子的全局最优位置,使其更逼近Pareto最优前沿;自适应惯性权重和加速度... 相似文献
11.
当无线传感器网络(wireless sensor network,WSN)采用概率覆盖模型时,难以采用几何方法进行网络覆盖率的优化。针对这一问题,通过提出一种改进粒子群优化(particle swarm optimization,PSO)算法,有效提高了WSN网络的覆盖率。首先对粒子越界处理的方法进行推了广,提高了其适用范围;其次,针对PSO算法容易陷入局部最优解的问题,通过对粒子探索能力进行增强,提出了一种探索能力增强型PSO(explorative capability enhancement PSO,ECE-PSO)算法,有效改善了种群陷入局部最优解的缺点。基于概率覆盖模型的WSN覆盖优化的仿真验证表明,ECE-PSO算法显著提高了解的质量,有效改善了算法收敛于局部最优解的缺点,且ECE-PSO算法具有较强的稳定性。 相似文献
12.
基于改进粒子群优化的非线性最小二乘估计 总被引:2,自引:0,他引:2
针对测量数据处理中非线性模型参数估计理论广泛使用的传统牛顿类算法对初值的敏感性问题,提出了一种求解非线性最小二乘估计的改进粒子群优化算法。该算法利用均匀设计方法在可行域内产生初始群体,无需未知参数θ的较好的近似作为迭代初值,而具有大范围收敛的性质;通过偏转、拉伸目标函数有效地抑制了粒子群优化算法易收敛到局部最优的缺陷。给出应用该方法到NLSE的具体步骤,通过仿真实验证明该算法的有效性。 相似文献
13.
为提高约束优化模型的求解准确度和运算速度,针对粒子群算法及其计算方法进行了改进。引入多样化机制避免算法陷入局部最优的危险:创建多个子群将决策空间划分为多个搜索子空间,多子群独立搜索以保证群间解的多样化;用量子粒子代替普通粒子,为其添加服从球状分布的伴随粒子来提高群内解的多样化。多样化的引入增加了计算量和计算复杂度,利用并行计算提高算法运行速度:分析了改进粒子群算法并行计算的方法,在私有云计算平台上编写了基于MapReduce的并行求解流程。实验结果表明,本文方法具有较高准确度,算法的稳定性也较好,运算速度可成倍提高。 相似文献
14.
临空高速飞行器具有飞行空域大、速度快等特点。针对临空高速飞行器协同跟踪面临分配资源要素众多、协同关系复杂等问题,在构建了面向临空高速飞行器的多传感器协同跟踪优化模型的基础上,通过改进粒子群优化算法的速度及位置更新方式,提出了结合置信算子及排斥算子的粒子群优化(confidence operator and repulsion operator particle swarm optimization, CORO-PSO)算法。仿真实验验证了所提算法能够满足临空高速飞行器协同跟踪对精确性及实时性的高要求,对临空高速飞行器探测跟踪系统的发展提供了一定的方法支撑。 相似文献
15.
Optimization method for diagnostic sequence based on improved particle swarm optimization algorithm 总被引:1,自引:0,他引:1 下载免费PDF全文
To realize the requirement of diagnostic sequence optimization in the process of design for testability, the authors put forward an optimization method based on quantum-behaved particle swarm optimization (QPSO) algorithm. By a precedence ordering coding, the diagnostic sequence optimization can be translated into a precedence ordering problem in the multidimensional space of swarm. It can get the optimizing order quickly by using the
powerful and quick search capability of QPSO algorithm, and the order is the diagnostic sequence for the system. The realization of the method is simpler than other methods, and the results are more excellent than others, and it has been applied in the engineering practice. 相似文献
16.
To meet the requirements of safety, concealment, and timeliness of trajectory planning during the unmanned aerial vehicle(UAV) penetration process, a three-dimensional path planning algorithm is proposed based on improved holonic particle swarm optimization(IHPSO). Firstly, the requirements of terrain threat, radar detection, and penetration time in the process of UAV penetration are quantified. Regarding radar threats, a radar echo analysis method based on radar cross section(RCS)and the spatia... 相似文献
17.
基于改进PSO算法的实时故障监测诊断测试集优化 总被引:2,自引:0,他引:2
针对基于相关性模型的复杂系统实时故障诊断问题,引入一种改进的多目标离散粒子群优化算法对测试集进行优化选择,以提高诊断系统效率,降低测试成本。基于现有粒子群优化算法,将粒子速度更新和位置更新的意义与测试选择相联系,提出了新的速度和位置更新公式;针对测试集故障检测数、故障隔离数、测试个数及成本等多个指标,分别设计了故障监测测试集和诊断测试集的多目标适应度函数,并给出最优解的多目标更新方法。仿真结果表明:改进算法收敛速度快,计算精度高,可为实时监测诊断系统测试集优化选择提供有效指导。 相似文献
18.
在杂波建模、仿真和分类识别研究中,杂波模型参数估计是一个重要的内容。广义K-分布杂波模型的散斑分量和幅度调制分量均服从广义Gamma分布,参数估计存在高维、非线性等问题。将改进的粒子群优化算法应用于广义K-分布杂波模型参数估计,采用均匀设计方法初始化粒子群,利用交叉变异策略改善粒子群优化的全局收敛性,该方法能准确地估计杂波模型各参数,计算简单,收敛速度较快,稳定性较好。仿真实验结果表明该方法具有良好的适应性和估计精度,验证了其有效性和准确性。 相似文献
19.
针对装备保障任务多目标规划过程中任务与资源匹配复杂、目标权重获取困难和非劣解过多等问题,建立了装备保障任务多目标规划的目标模型和约束模型,提出了一种基于改进粒子群优化的交互式多目标装备保障任务规划方法。通过离散化编码方式和任务优先排序,完成了任务与资源的匹配及任务时序的调整;通过建立目标权重调整模型,实现了根据评价结果调整目标权重的交互过程,解决了目标权重无法精确获取的问题;通过调整后的目标权重构造适应度函数获取一个相对最优解,从而避免了因过多非劣解而导致决策困难的问题。该方法能够较好地实现装备保障的精确化和高效化,在信息化条件下装备保障辅助决策及方案生成中具有重要的参考价值。 相似文献