首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
针对深度卷积神经网络(deep convolutional neural network, DCNN)迁移至高分辨率遥感场景分类的问题。设计了有效的网络结构用于增强DCNN在高分辨率遥感场景分类任务中的泛化能力。首先,线性主成分分析网络被用于整合高分辨率遥感图像的空间信息,减小DCNN在迁移过程中源数据集与目标数据集之间的空间差异。随后,经整合的图像输入预训练的DCNN,提取到更具泛化性能的全局特征表达。两个公开遥感数据集(UC Merced 21和WHU-RS 19)的试验结果表明,在不改变DCNN结构参数的情况下,相比现有方法,所设计的网络结构能够有效提升遥感场景分类精度。  相似文献   

2.
场景语义分类是图像理解领域中一个重要的研究方向,涉及到信号处理、模式识别、计算机视觉和认知科学等多学科交叉。场景分类任务中,图像内容描述和分类判决是两大关键问题。图像内容描述力图得到关于场景图像最具判别意义的表示,而分类判决则对训练样本集的图像内容描述学习、训练,并建模得到某类场景图像区别于其他场景类图像的计算模型。目前,很多场景分类方法针对图像内容描述和图像分类进行了深入的研究,对室外人造场景、室外自然场景和室内场景图像进行分类,取得了较好的分类效果。然而,场景图像自身内容上的变化和差异,既会造成同一场景类内对象的差异性,同时也造成不同场景类之间图像的视觉相似性,特别是对于不同的室内场景类。因此,场景语义分类任务十分困难,是计算机视觉和认知心理学领域中一个颇具挑战性的难题。室外图像场景分类研究相对成熟,而室内图像场景分类研究却进展缓慢。本文综述了图像场景语义分类的研究进展,并分析了场景分类算法的性能,指出场景语义分类研究中存在的问题。  相似文献   

3.
遥感场景下的舰船目标跟踪具有重要的战略意义和经济价值, 如何克服遥感视角下舰船朝向任意性、近岸舰船密集排列等问题对跟踪性能的影响是一项具有挑战性的任务。针对遥感场景下舰船等大长宽比目标的多目标跟踪(multiple-object tracking, MOT)任务, 提出一种基于惯性预测的多目标跟踪器(inertial predicting multiple-object tracker, IPMOT)。首先, 利用检测-跟踪(tracking-by-detection, TBD)范式级联检测器和跟踪器有效避免训练过程对时序关系的依赖, 通过公开的目标检测数据集实现对检测器的训练, 解决跟踪数据集缺乏的问题。其次, 针对TBD范式在检测阶段存在的漏检严重影响跟踪性能的问题, 构建惯性跟踪模型(inertial tracking model, ITM), 通过多步预测来实现检测器漏检时的跟踪保持, 并利用角度修正消除边界处角度突变的影响。最后, 为实现所提算法的模型训练和性能测试, 制作舰船MOT (ship MOT, SMOT)数据集。实验结果表明, 所提模型在MOT精度(MOT accuracy, MOTA)和识别F1分数(identity F1 score, IDF1)指标上分别提升3.9%和7.2%, 在IDs和Frag指标上的表现有明显改善, 具有较好的跟踪精度和稳定性。  相似文献   

4.
针对多数传统分类算法应用于高光谱分类都存在运算速度慢、精度比较低和难以收敛等问题,从稀疏表示基本理论出发建立了一个基于自适应稀疏表示的高光谱分类模型。利用训练样本构建字典,聚类每一步迭代所产生的余项,将聚类中心作为新的字典原子,然后将测试样本看成冗余字典中训练样本的线性组合,令字典能够更适应于样本的稀疏表示。利用华盛顿地区的HYDICE高光谱遥感数据进行试验,并且与主成分分析、线性鉴别分析、支持向量机、神经网络算法进行比较,结果表明,该算法的总体分类精度比其他算法提高了约12%,有效提高了高光谱影像的分类精度。  相似文献   

5.
针对多极化合成孔径雷达(polarimetric synthetic aperture radar, POLSAR)影像由于受到相干斑噪声影响导致分类精度较低,提出了一种基于均值漂移和多尺度马尔科夫随机场的非监督分类算法。该算法首先由Mean-Shift算法得到最粗尺度的初始分类结果,然后由马尔科夫随机场对结果进行优化得到最粗尺度最终分类结果。将上一尺度的分类结果映射到下一尺度作为初始分类结果,然后由Wishart分布对极化协方差矩阵进行建模并采用迭代条件模式(iterative conditional modes, ICM)算法求取基于最大后验下分类结果。逐层映射,最细尺度的结果作为最终分类结果。详细给出了算法的基本原理和实施步骤,并采用E-SAR和AirSAR数据对算法进行了验证。实验表明,与同类算法相比较,算法具有更高的分类精度。  相似文献   

6.
基于空间信息的DBN图像分类快速训练模型   总被引:1,自引:0,他引:1  
数据的指数级增长及算法本身的复杂性使深度信念网络(DBN)面临着学习效率问题。根据DBN的样本图像与空间信息无关的特点,建立了DBN图像分类快速训练模型,提出了基于多幅样本图像线性叠加合成思想的DBN图像分类算法—LSMI算法。利用信息熵理论,证明了样本图像与空间信息无关的特点,并以ORL库为依据进行了验证。根据正态历经性,提出了LSMI算法,并以COREL库和MIT库为仿真对象,与其他改进算法进行对比,从正确识别率和算法时间复杂度等指标,判断该算法的有效性。仿真结果表明LSMI算法在保证识别率不变的同时,大幅度降低了算法的训练时间,达到快速学习的目的。  相似文献   

7.
基于深度学习混合模型迁移学习的图像分类   总被引:4,自引:0,他引:4  
  相似文献   

8.
基于场景语义的图像检索新方法   总被引:1,自引:0,他引:1  
针对图像的场景语义检索问题,提出一种基于多示例学习(multi-instance learning, MIL)的新方法。首先,该方法将图像当作多示例包,再根据图像的颜色复杂度,设计了自适应JESG图像分割方法,对图像进行自动分割,并提取每个分割区域的颜色-纹理特征,当作包中的示例,将图像检索问题转化成多示例学习问题;然后,利用改进的推土机距离(earth mover distance, EMD)来度量不同多示例包(图像)之间的整体相似度,设计了一种新的惰性MIL算法,用于场景图像检索。基于COREL图像库的对比实验结果表明,设计的示例构造方法与MIL算法都是有效的,且检索精度优于其他同类方法。  相似文献   

9.
高分辨率遥感影像中,传统的道路提取方法存在着精度低、鲁棒性低的问题,提出基于高分辨率网络(high-resolution net, HRNet)实现高分辨率遥感影像道路分割。对HRNet进行改进,将相同分辨率的HRNet子网的输出与输出层结果进行拼接并输入非局部块,两个损失函数Cross-entropy Loss和Dice Loss用来解决道路数据集样本不平衡问题。实验结果表明,改进的HRNet在公开的CHN6-CUG道路数据集上的分割性能与其他方法相比对道路的提取效果更好,在召回率、均交并比和F1分数3个方面分别达到了97.65%、84.91%和97.25%。  相似文献   

10.
为实现基于语义的图像分类,其本质还是从底层特征出发,因此,高层信息的学习和建模也就必须来源于底层特征了。在底层特征提取的基础上提出了一个基于SVM的图像分类系统的设计,重点介绍了图像数据库的设计和分类引擎的设计,说明了其可行性和方便易用性。最后展望了基于SVM的图像分类引擎技术的发展方向和应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号