共查询到19条相似文献,搜索用时 46 毫秒
1.
针对深度卷积神经网络(deep convolutional neural network, DCNN)迁移至高分辨率遥感场景分类的问题。设计了有效的网络结构用于增强DCNN在高分辨率遥感场景分类任务中的泛化能力。首先,线性主成分分析网络被用于整合高分辨率遥感图像的空间信息,减小DCNN在迁移过程中源数据集与目标数据集之间的空间差异。随后,经整合的图像输入预训练的DCNN,提取到更具泛化性能的全局特征表达。两个公开遥感数据集(UC Merced 21和WHU-RS 19)的试验结果表明,在不改变DCNN结构参数的情况下,相比现有方法,所设计的网络结构能够有效提升遥感场景分类精度。 相似文献
2.
场景语义分类是图像理解领域中一个重要的研究方向,涉及到信号处理、模式识别、计算机视觉和认知科学等多学科交叉。场景分类任务中,图像内容描述和分类判决是两大关键问题。图像内容描述力图得到关于场景图像最具判别意义的表示,而分类判决则对训练样本集的图像内容描述学习、训练,并建模得到某类场景图像区别于其他场景类图像的计算模型。目前,很多场景分类方法针对图像内容描述和图像分类进行了深入的研究,对室外人造场景、室外自然场景和室内场景图像进行分类,取得了较好的分类效果。然而,场景图像自身内容上的变化和差异,既会造成同一场景类内对象的差异性,同时也造成不同场景类之间图像的视觉相似性,特别是对于不同的室内场景类。因此,场景语义分类任务十分困难,是计算机视觉和认知心理学领域中一个颇具挑战性的难题。室外图像场景分类研究相对成熟,而室内图像场景分类研究却进展缓慢。本文综述了图像场景语义分类的研究进展,并分析了场景分类算法的性能,指出场景语义分类研究中存在的问题。 相似文献
3.
针对多数传统分类算法应用于高光谱分类都存在运算速度慢、精度比较低和难以收敛等问题,从稀疏表示基本理论出发建立了一个基于自适应稀疏表示的高光谱分类模型。利用训练样本构建字典,聚类每一步迭代所产生的余项,将聚类中心作为新的字典原子,然后将测试样本看成冗余字典中训练样本的线性组合,令字典能够更适应于样本的稀疏表示。利用华盛顿地区的HYDICE高光谱遥感数据进行试验,并且与主成分分析、线性鉴别分析、支持向量机、神经网络算法进行比较,结果表明,该算法的总体分类精度比其他算法提高了约12%,有效提高了高光谱影像的分类精度。 相似文献
4.
基于空间信息的DBN图像分类快速训练模型 总被引:1,自引:0,他引:1
数据的指数级增长及算法本身的复杂性使深度信念网络(DBN)面临着学习效率问题。根据DBN的样本图像与空间信息无关的特点,建立了DBN图像分类快速训练模型,提出了基于多幅样本图像线性叠加合成思想的DBN图像分类算法—LSMI算法。利用信息熵理论,证明了样本图像与空间信息无关的特点,并以ORL库为依据进行了验证。根据正态历经性,提出了LSMI算法,并以COREL库和MIT库为仿真对象,与其他改进算法进行对比,从正确识别率和算法时间复杂度等指标,判断该算法的有效性。仿真结果表明LSMI算法在保证识别率不变的同时,大幅度降低了算法的训练时间,达到快速学习的目的。 相似文献
5.
针对多极化合成孔径雷达(polarimetric synthetic aperture radar, POLSAR)影像由于受到相干斑噪声影响导致分类精度较低,提出了一种基于均值漂移和多尺度马尔科夫随机场的非监督分类算法。该算法首先由Mean-Shift算法得到最粗尺度的初始分类结果,然后由马尔科夫随机场对结果进行优化得到最粗尺度最终分类结果。将上一尺度的分类结果映射到下一尺度作为初始分类结果,然后由Wishart分布对极化协方差矩阵进行建模并采用迭代条件模式(iterative conditional modes, ICM)算法求取基于最大后验下分类结果。逐层映射,最细尺度的结果作为最终分类结果。详细给出了算法的基本原理和实施步骤,并采用E-SAR和AirSAR数据对算法进行了验证。实验表明,与同类算法相比较,算法具有更高的分类精度。 相似文献
6.
7.
基于场景语义的图像检索新方法 总被引:1,自引:0,他引:1
针对图像的场景语义检索问题,提出一种基于多示例学习(multi-instance learning, MIL)的新方法。首先,该方法将图像当作多示例包,再根据图像的颜色复杂度,设计了自适应JESG图像分割方法,对图像进行自动分割,并提取每个分割区域的颜色-纹理特征,当作包中的示例,将图像检索问题转化成多示例学习问题;然后,利用改进的推土机距离(earth mover distance, EMD)来度量不同多示例包(图像)之间的整体相似度,设计了一种新的惰性MIL算法,用于场景图像检索。基于COREL图像库的对比实验结果表明,设计的示例构造方法与MIL算法都是有效的,且检索精度优于其他同类方法。 相似文献
8.
9.
各种干扰的存在使得高分辨率合成孔径雷达(synthetic aperture radar,SAR)图像道路网的提取变得异常困难。马尔可夫随机场(Markov random field, MRF)模型能够充分利用道路图像的上下文特征以及先验知识,在道路网提取中得到广泛应用,但存在求解过程偏慢及参数设置偏多问题。首先根据道路空间几何特征关系对提取出的线基元进行预连接,以此减少虚假连接给MRF迭代求解带来的运算量;然后建立MRF道路网改进模型对道路网进行快速标记。使用1m机载高分辨率SAR图像进行实验,结果验证了该方法的有效性。 相似文献
10.
针对当前舰船目标检测算法存在锚框遍历计算成本高和特征旋转适应性不足等问题, 提出基于关键点的遥感图像舰船目标检测方法, 通过预估舰船中心点实现目标检测。首先, 引入深度可分离卷积降低参数冗余, 结合SimAM无参注意力机制, 增强对舰船目标的关注度。其次, 引入方向不变模型(orientation-invariant model, OIM)生成方向不变特征图, 增强网络对旋转目标的适应能力。最后, 考虑到遥感图像舰船目标任意方向密集排列, 但舰船目标中心点不变的特点, 采用直接预测目标的中心点, 再回归偏移量、目标尺度和角度的思路, 摆脱锚框遍历机制, 提高检测速度。在HRSC2016和RFUE2021数据集上进行对比实验, 实验结果充分说明了本文方法的有效性和先进性。 相似文献
11.
Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-scale decomposition of the area of thin cloud cover on remote sensing images. Through enhancing coefficients of high frequency and suppressing coefficients of low frequency, the thin cloud is removed. For thick cloud cover, if the areas of thick cloud cover on multi-source or multi-temporal remote sensing images do not overlap, the multi-output support vector regression learning method is used to remove this kind of thick clouds. If the thick cloud cover areas overlap, by using the multi-output learning of the surrounding areas to predict the surface features of the overlapped thick cloud cover areas, this kind of thick cloud is removed. Experimental results show that the proposed cloud removal method can effectively solve the problems of the cloud overlapping and radiation difference among multi-source images. The cloud removal image is clear and smooth. 相似文献
12.
在分析了Kohonen自组织特征映射网络(SOFM)和学习矢量量化(LVQ)算法的基础上,提出一种基于改进的SOFM算法和LVQ2算法的混合学习矢量量化(HLVQ)方法,并建立了基于HLVQ的遥感影像非监督和监督分类的一般模型。通过与传统的统计分类方法和LVQ2网络分类器比较,HLVQ分类器总的分类性能更好、识别率更高。 相似文献
13.
多光谱和合成孔径雷达图像的融合可以保留每个数据的优势, 有利于提高土地覆盖分类精度。然而, 当前的一些图像融合方法不能完全利用原始数据的光谱信息与纹理细节。为了克服上述问题, 提出一种基于空谱信息协同和Gram-Schmidt变换的融合方法。在所提方法中, Sentinel-2A图像和高分三号(GaoFen-3, GF-3)图像分别经过不同的预处理操作。由于灰度共生矩阵能有效提取图像的纹理信息, 因此将其应用于Sentinel-2A图像以提取结构特征, 并将空谱信息协同的多光谱图像与GF-3图像通过Gram-Schmidt变换进行融合。实验采用主成分分析法和传统的Gram-Schmidt变换作为比较方法。为了确定融合算法的有效性, 采用5项评价指标(包括平均梯度、空间频率、均值、标准差和相关系数)来衡量融合图像的质量。此外, 由于随机森林具有优秀的训练速度和出色的分类性能, 将其用于土地覆盖分类。随机森林的分类精度、Kappa系数和分类结果图作为融合方法的评价标准。实验结果表明, 与单独使用原始Sentinel-2A相比, 所提方法可以将整体精度提高多达5%, 具有提高遥感卫星图像土地覆盖分类精度的潜力。 相似文献
14.
高分辨率的应用需求使得传统的遥感成像系统面临高速率采样、海量数据存储等难以突破的瓶颈问题。基于压缩感知理论设计的雷达和光学稀疏遥感成像系统,突破了Shannon-Nyquist定理的限制,以较少的测量数据实现了同等甚至更高质量的信号重构。首先,根据被测目标和场景的不同特性,分别设计了稀疏表示矩阵;其次,根据互相关最小化原则,选择了与稀疏表示矩阵相适应的最优感知矩阵;最后,研究了适用于二维成像大规模数据的稀疏重构算法。专业电磁散射仿真软件生成的雷达观测数据和复杂场景光学图像的数值仿真,验证了本文设计的稀疏遥感成像系统原理上的可行性。 相似文献
15.
Zhong Sheng Zhang Tianxu & Sang NongState Key Lab for Image Processing & Intelligent Control Institute for Pattern Recognition Artificial Intelligence Huazhong University of Science Technology Wuhan P. R. China 《系统工程与电子技术(英文版)》2005,16(2)
1.INTRODUCTION Downwardlookingscenematchingiswidelyusedin theaircraftautomaticguidance.Theaircraftobtains sensedimagesinthepresetflightrouteandcompares themwiththereferenceimagestoredbeforethemis sion.Withthecomparisonofthesetwoimages,the aircraftgetsitscurrentpositionintheflightmap.Al thoughtherearesomemethods,suchasthemethod basedonthefractaldimension[1],themethodbased ontheknowledgeofobjectedge[2],histogram based method[3],themeanandstandarddeviationquantiza tionmethod[4]andspatialr… 相似文献
16.
The development of image classification is one of the most important research topics in remote sensing. The prediction accuracy depends not only on the appropriate choice of the machine learning method but also on the quality of the training datasets. However, real-world data is not perfect and often suffers from noise. This paper gives an overview of noise filtering methods. Firstly, the types of noise and the consequences of class noise on machine learning are presented. Secondly, class noise ... 相似文献
17.
遥感影像K均值聚类中的初始化方法 总被引:1,自引:0,他引:1
遥感影像非监督分类对初始点十分敏感。以K均值(K-means)算法为例,利用各种遥感影像实验比较5种初始化方法(随机法、Forgy法、Macqueen法、Kaufman法、MaxMin法)对非监督分类方法的影响。实验表明,Kaufman法相对于其他方法更稳定,获得分类结果更优,适合于各种遥感影像的非监督分类,并指出可以通过采样来加快Kaufman法的运算速度。同时,通过实验分析了采样数和影像区域对初始化方法的影响。 相似文献
18.
提出一种复杂场景极化合成孔径雷达(polarimetric synthetic aperture radar, PolSAR)图像机场跑道多级分类检测方法。首先利用先验信息进行h/q第一级分类,得到图像中各类训练样本模板;然后利用PolSAR图像极化相干矩阵的统计特性进行第二级分类;再根据跑道的弱回波特性,利用极化总功率检测器完成第三级分类,提取图像中疑似机场跑道区域;最后根据机场跑道的尺寸及结构特征进行判别,确定机场跑道区域。采用美国UAVSAR机载系统获取的多组实测数据对算法进行验证,并与现有的两种方法进行比较,结果表明,本文算法能有效地检测出跑道,并保持跑道结构完整、轮廓清晰且虚警率低。 相似文献
19.
针对极化合成孔径雷达(polarimetric synthetic aperture radar, PolSAR)图像相干斑抑制后的目标极化特性和结构特征保持问题,给出了一种多级分类的极化SAR图像斑点抑制方法。首先利用H/α快速分解法并结合极化总功率图像进行初分类,之后采用最小距离准则和聚合的层次聚类方法进行细分类,最后根据图像结构将图像内容分为亮点线目标、暗线目标和其他目标三大类,利用线性最小均方滤波器对暗线目标和非点线目标进行滤波。采用美国AIRSAR机载系统获取的实测数据进行实验,结果表明,与Lee的基于散射模型降斑算法相比,本文算法不仅能够更有效地抑制斑点噪声,而且在保持极化特性、结构和纹理特征方面更为有效。 相似文献