首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
机车车辆轮轨接触问题的数值模拟   总被引:2,自引:0,他引:2  
按照机车、车辆车轮与标准轨道的实际几何关系建立了三维有限元模型,并采用有限元参数二次规划法求解轮轨弹塑性接触问题.通过弹塑性接触计算,得到了大量的轮轨接触力、接触状态和轮轨应力的数据,根据计算结果分析比较了机车轮轨接触和车辆轮轨接触的区别,对轮缘贴靠钢轨形成两点接触时的接触情况进行了初步分析.  相似文献   

2.
运用Proe、Hypermesh建立了二维轮轨接触有限元模型,通过动力分析有限元程序AN-SYS/LS-DYNA,采用隐式显式分析方法计算了车轮椭圆化情况下的轮轨滚动接触.仿真结果分析表明:当椭圆化车轮长轴与轨道接触时,轮轨垂向接触力最小,当椭圆化车轮短轴与轨道接触时,轮轨垂向接触力最大,这样将导致车轮的椭圆化加剧,进而轮轨垂向接触力也增大,周而复始,会造成对车轮和轨道的破坏.轮轨垂向接触力随着车轮椭圆化的加剧和车速的提高而增大,且椭圆化波深比速度的影响更为显著.行驶路程相同的情况下,椭圆化车轮的车轴垂向加速度比新轮的要大,而且随着车速的提高,车轴垂向加速度也随之增大.车速300 km/h时椭圆化车轮最大允许波深为1.25 mm,350 km/h时椭圆化车轮最大允许波深为1 mm,超过上述限度时,需对轮对进行镟修.  相似文献   

3.
为比较高速铁路60 N钢轨与不同车轮型面匹配时的车辆动力性能,首先基于空间轮轨接触几何算法分析不同工况下的轮轨接触几何关系,接着基于车辆/轨道耦合动力学模型,对不同工况下车辆运行平稳性及车辆曲线通过性能等进行仿真分析,数值计算中,主要考虑LM,LMA和S1002 3种车轮型面和轨距由1 433 mm变化到1 437 mm的工况。计算结果表明:60 N钢轨与不同车轮型面匹配时,其轮轨接触几何关系和车辆动力性能差异较大;LMA的车辆运行平稳性最好,但曲线通过能力较差,容易发生轮轨侧磨,S1002的车辆运行平稳性最差,但曲线通过能力最好,较容易发生轮轨垂磨;60 N钢轨与不同车轮型面匹配时,应从静态轮轨接触几何关系和动态车辆轨道相互作用2个方面综合评价。  相似文献   

4.
利用有限元分析软件Ansys对轮轨系统进行弹塑性静力分析,建立起重机小车在运行中发生偏斜和不发生偏斜两种工况下的有限元模型,研究这两种不同工况下轮轨系统所受应力的分布状态.结果表明,小车运行中发生偏斜时,轮轨承受更大的应力,最大应力区集中分布在小车偏斜方向的半边轨道上,且轮缘与轨道之间发生接触,导致轮轨更易磨损.  相似文献   

5.
建立了复杂运营条件下重载货车车轮磨耗发展的数值预测模型,并编制了计算程序.基于Archard材料磨损理论,在车辆-轨道耦合动力学和轮轨滚动接触分析基础上进行磨耗分布计算;通过多工况仿真并引入权重因子来实现对实际复杂运营条件的模拟;采用自适应步长算法进行车轮型面更新,可有效改善数值模型稳定性和可靠性.基于所建模型对大秦铁路实际运营条件下货车车轮的磨耗发展过程进行预测分析,结果表明:随运行里程增加各车轮磨耗均不断增大,但磨耗发展呈逐渐减缓趋势.各车轮磨耗主要分布在名义滚动圆两侧走行区域,起导向作用的车轮磨耗分布范围更宽.各车轮在靠近轮缘侧的磨耗发展均更快,导向轮对车轮这一特征更为明显.计算结果验证了模型的合理性.  相似文献   

6.
采用ANSYS/LS-DYNA建立自由轮对运行于半径3500 m曲线轨道上的三维轮轨滚动接触有限元模型,于时域内模拟考虑轮对初始横移和侧滚角的高速曲线通过和瞬态滚滑行为,分析不同牵引系数下23阶实测车轮多边形对轮对曲线通过和车轮瞬态磨耗的影响.研究结果表明:车轮多边形会造成轮轨力、法/切向接触应力、摩擦功和磨耗深度等的...  相似文献   

7.
重载铁路钢轨磨耗状态下的轮轨法向接触特性   总被引:1,自引:0,他引:1  
基于三维弹性体滚动接触理论,对法向接触问题最小余能方程的影响系数和法向间隙进行修正,使其更适用于非平面接触问题的求解.以某重载铁路通过总重达100 Mt的CHN75型面磨耗钢轨为对象,车轮选取LMA系列原始型面,利用修正后的接触模型,研究在30 t轴重作用下的轮轨法向接触特性.结果表明:轮对横移量对轮轨接触特性影响较大,横移量在+12~+14 mm轮轨接触状态变化显著;其中,横移量在+12.9~+13.2 mm时出现两点接触,横移量增大至+14 mm时出现车轮轮缘和钢轨轨距角的接触.  相似文献   

8.
对比初始与实测轮轨型面对上海地铁A型车的曲线通过性能的影响,并分析不同的轮轨型面匹配对轮轨磨耗、钢轨波浪形磨耗、接触疲劳的影响.结果表明4种不同的轮轨匹配下,车辆的曲线通过性能都能满足车辆动力学性能要求,但新车轮运行在已磨损的轨面上时,曲线通过性能略差,其轮轨横向力和脱轨系数偏高.初始轮轨匹配在过小半径曲线时其外轮轨具有较大的自旋功,且内外轮轨上高的纵向蠕滑率将导致车轮产生粘滑振动,易形成波磨,经过滚动接触疲劳分析,磨损后的车轮踏面易对小半径曲线外轨造成表面接触疲劳破坏.  相似文献   

9.
针对地铁列车运营后出现的车轮踏面滚动接触疲劳现象,利用有限元软件ABAQUS建立考虑轮轨真实几何关系的三维弹塑性轮轨接触数值仿真模型,结合现场调查车轮磨耗结果和轮轨接触几何关系分析,计算分析车轮不同凹陷磨耗状态对踏面材料应力应变状态的影响。研究结果表明:车轮踏面主要凹陷磨耗区域为车轮踏面横向位置-30~50 mm处,轮轨接触几何关系呈强非线性特性,其轮轨接触点位置集中在车轮踏面横向位置20~32 mm或-32~-20 mm。车轮不同凹陷磨耗状态下的轮轨接触状态差异显著,在磨耗突变区(-30~-20 mm)轮轨接触斑呈狭长椭圆分布,导致相同载荷下轮轨接触应力较大。当轮对向外轨横移时,车轮凹陷磨耗接触区域材料易进入屈服状态,此时车轮踏面沿接触斑深度方向0~3.6 mm范围内Von-Mises等效应力最大,踏面表层材料等效塑性应变最大。车轮踏面出现凹陷磨耗后,车辆频繁地通过小半径曲线时易在磨耗突变区造成较高的等效应力和等效塑性应变,从而导致轮缘根部表面材料产生剥离损伤。  相似文献   

10.
为了研究不同车轮型面对地铁9号道岔转辙器区的轮轨静态接触行为的影响,基于经典迹线法求解轮轨接触几何关系,利用三维非赫兹滚动接触理论分析接触力学特性,分析接触点对分布、道岔转辙器结构不平顺、轮轨接触几何参数和轮轨接触斑的形状、面积及最大法向接触应力等。数值计算中,考虑轮背距为1 353 mm的LM和DIN5573以及轮背距为1 358 mm的S1002这3种车轮型面,从静力学分析的角度提出地铁道岔区的最优车轮型面。研究结果表明:DIN5573车轮过岔接触点对分布较集中,结构不平顺幅值较小,直向过岔时轮对的稳定性较好但接触力学特性较差;S1002车轮侧向过岔通过能力较强,接触力学特性良好,但轮对向尖基轨侧横移时较易发生轮缘接触,轮轨表面易产生疲劳伤损;LM车轮综合匹配性能最好。  相似文献   

11.
为探究中国350 km/h的动车组的车轮磨耗变化及其动力学性能变化,对运营中的某350 km/h的新型动车组进行踏面磨耗跟踪测量,发现车轮在镟修周期内出现了踏面凹型磨耗和轮缘根部磨耗问题。从轮轨接触关系开始对上述发现进行研究,并通过SIMPACK软件仿真模拟,探究在高速下该型车轮磨耗的增加对车辆的动力学性能(包括非线性临界速度、曲线脱轨系数、车辆平稳性指标、磨耗功率)的影响。研究结果表明:350 km/h高速运行的新型动车组,其车轮磨耗主要为踏面滚动圆处的凹型磨耗与轮缘根部磨耗;伴随着车轮磨耗的增加,轮轨接触发生改变,滚动圆两侧的疲劳损伤愈加明显,车辆的动力学性能不断恶化。最后就车轮的磨耗的发生位置与其特点提出了几点建议。  相似文献   

12.
城市轨道车辆车轮轮缘磨耗分析   总被引:1,自引:0,他引:1  
 阐述了轮缘高度、轮缘厚度以及轮缘综合值3个参数对城市轨道车辆车轮的作用以及重要性,基于城市轨道交通某线路车轮的实际磨耗数据,分别对这3个参数进行重点研究,分析了各参数对车辆车轮磨耗的影响,主要结果表明:该线路属于典型的踏面磨损线路,存在较普遍的轮缘虚增厚问题,拖车的第一轴和第四轴存在一定同轴左、右车轮轮缘磨损不均匀现象。有针对性地提出延长该线路车轮使用寿命的建议,认为可以通过适当调节轮轨硬度比、定期反向运行、调整拖车空气制动力和动车电制动力的分配比例、降低空气制动切入点速度等方法有效降低车轮磨耗,提高车辆的安全运营。  相似文献   

13.
基于车辆车轮在生产过程中存在质量偏心或几何偏心,导致列车在运行一段时间之后出现车轮谐波磨耗现象,车轮谐波磨耗将对轮轨垂向力及车辆稳定性产生严重影响,以国内某地铁车辆为参考,运用车辆轨道耦合模型理论,采用Fourier级数模拟2阶、3阶车轮谐波磨耗,建立该车的车辆/轨道耦合模型及车轮谐波磨耗模型。仿真计算车轮谐波磨耗及轨道不平顺激扰等因素对轮轨垂向力及车辆稳定性的影响,并分析车辆在单一激扰工况和叠加激扰工况下车辆动力学参数的差异。研究结果表明:速度对轮轨垂向力的影响远大于幅值和相位差对轮轨垂向力的影响,轨道不平顺激扰对轮轨垂向力的影响不大;随着速度增大,车轮谐波磨耗对车辆运行平稳性影响越显著。  相似文献   

14.
为从轮轨瞬态接触黏滑振动角度探究地铁线路上钢轨波磨的形成机理,该文首先根据现场波磨情况建立了三维轮轨滚动接触有限元模型并论证其有效性;然后,分析了车轮运行过程中的接触黏滑状态,并讨论了轮轨接触黏滑特性与波磨生成的关系;最后,研究了轮轨系统固有特性和钢轨纵向磨耗特征。结果表明:凹坑缺陷改变了轮轨滚动接触黏滑分布,导致轮轨界面发生滑移并诱发轮轨系统失稳,且滑移会进一步引起钢轨磨耗,以致最终可能形成波磨。综合轮轨接触黏滑特性和复模态分析的结果,可将钢轨波磨的形成机理归为轨面缺陷激励引发的轮轨系统的固有不稳定振动,且该不稳定振动表现为钢轨相对于轨道板的垂向弯曲振动。当车轮经过凹坑缺陷时,会产生瞬态纵向波动磨耗,且磨耗的特征波长为40~50 mm,这与实测线路上的波磨波长情况相符,从而进一步验证了钢轨波磨的形成机理。  相似文献   

15.
为阐明地铁直线轨道上的异常波磨现象,从轮轨滚动接触层面研究钢轨波磨特性。首先,调研实测线路波磨特征,并建立三维轮轨滚动接触有限元模型;然后,分析轮轨黏滑特性以及轮轨接触和钢轨磨耗特征,以期从微观瞬态角度解释钢轨波磨的演化过程;最后,结合系统稳定性分析,从宏观上表征钢轨波磨的发展趋势。研究结果表明,在无波磨工况下,轮轨接触未出现黏滑过程,因而钢轨波磨不会形成;在波磨工况下,轮轨接触出现了轻微的黏滑运动,进而促使初始波磨继续发展。对于轨面接触区域中的固定节点,其所在断面的应力和应变最大值会随着车轮运行逐渐从次表面转移至表面,由于断面损伤易发位置与应力和应变最大值密切相关,因此,损伤易发位置也会在次表面首先形成并逐渐转移至表面,这从微观角度说明波磨断面波峰/波谷的形成是一个由下而上的损伤累积过程;在车轮单次运行后,波磨区域发生了明显的不均匀相对滑移,进一步说明初始波磨仍处在发展过程中;轮轨系统不稳定振型对应频率与实测波磨通过频率相近,表明初始波磨将随着车轮运行逐渐加剧。  相似文献   

16.
基于轮轨非Hertz接触的影响系数的有限元计算方法   总被引:1,自引:0,他引:1  
采用非Hertz接触理论求解轮轨接触问题时,影响系数对轮轨接触应力与接触斑大小产生重要影响.由于当车轮轮缘与钢轨在轨距角处发生接触时,非Hertz接触理论中基于弹性半空间条件下的影响系数已不适用,所以利用有限元方法求解了全空间内轮轨非Hertz接触的影响系数,并对Kalker的非Hertz接触理论做了修正.在保证计算效率的前提下,以30t轴重重载铁路CHN75钢轨和LM磨耗车轮踏面为例,采用修正的非Hertz理论及轮轨接触分区模型P_M(partition model)分别计算了轮对横移量为0~8mm时的轮轨接触斑面积及接触斑应力.研究结果表明,用有限元法计算出的影响系数大于Bossinisqe-Cerruti公式求出的影响系数,并且在轨距角处的影响系数大于轨顶处.修正的非Hertz理论计算出的法向应力和接触斑面积始终要比P_M模型计算出的法向应力略大一些,且随轮对横移量的增加,两种轮轨法向接触模型计算出的法向应力和接触斑趋势一致.当横移量为0~4mm时,最大接触斑面积可达173.75mm2,轮轨型面较为匹配;当横移量持续增大时,由于车轮与钢轨轨距角接触,接触面积急剧降低,同时法向应力急剧增大.  相似文献   

17.
机车同轴左右车轮存在直径不一致的情况,改变了轮轨的接触状态。针对机车同轴轮径差的问题,建立了机车动力学仿真模型和轮轨接触三维弹塑性有限元模型,通过动力学仿真计算和动载荷作用下弹塑性接触计算,分析同轴轮径差对机车运行性能的影响。结果表明:由于同轴轮径差的存在,轮轨间的动载荷发生变化,当内侧车轮直径小于外侧车轮直径时,在一定程度上有利于机车曲线通过,反之则会降低曲线通过性能;与无轮径差相比,同轴轮径差存在时,车轮与钢轨接触位置发生改变,等效应力增大,导致磨耗增加,降低车轮和钢轨的使用寿命。  相似文献   

18.
机车同轴左右车轮存在直径不一致的情况,改变了轮轨的接触状态。针对机车同轴轮径差的问题,建立了机车动力学仿真模型和轮轨接触三维弹塑性有限元模型。通过动力学仿真计算和动载荷作用下弹塑性接触计算,分析同轴轮径差对机车运行性能的影响。结果表明:由于同轴轮径差的存在,轮轨间的动载荷发生变化。当内侧车轮直径小于外侧车轮直径时,在一定程度上有利于机车曲线通过;反之则会降低曲线通过性能。与无轮径差相比,同轴轮径差存在时,车轮与钢轨接触位置发生改变,等效应力增大,导致磨耗增加,降低车轮和钢轨的使用寿命。  相似文献   

19.
应用有限元计算方法,以实际测试接触斑验证计算模型和方法的正确性;在此基础上,分析了踏面磨耗对轮轨接触特性的影响。首先,通过实际测试得到轮对的踏面轮廓坐标数据,根据实测数据建立有限元模型。应用感压胶片现场实测得到轮对自重时轮轨接触斑的大小,与有限元仿真轮对重力作用下的接触斑进行对比,证明有限元模型和接触参数设置的正确性。应用此有限元模型,研究了随着车辆运行里程的增加,车轮不断磨耗而发生变化的车轮型面对轮轨接触斑、接触应力的影响变化规律。结果表明:初期随着磨耗的增加,轮轨型面更加匹配,接触应力逐渐减小,磨耗速度逐渐降低;当车轮磨耗到一定程度后,接触应力和磨耗速度又快速上升。  相似文献   

20.
针对我国200 km/h城际动车组车轮发生的Ⅰ类滚动接触疲劳,对16列动车组及4个不同半径曲线轨道进行轮轨状态现场观测。基于多体动力学软件SIMPACK和损伤函数模型,建立车轮滚动接触疲劳预测模型,系统分析城际动车组的车轮Ⅰ类疲劳损伤。研究结果表明:早期时动车组不调头运行,Ⅰ类疲劳在运行(6~9)万km即出现,集中在左侧车轮,其疲劳区最初位于名义滚动圆外侧5~15 mm处,之后略有扩大并向踏面外侧移动;曲线通过时的低轨侧轮轨相互作用是导致Ⅰ类疲劳的根本原因,当半径R大于400 m时,预测的疲劳寿命随半径的增加而增加;所运行线路上小半径曲线(R≤450 m)全为左曲线,导致早期不调头Ⅰ类疲劳集中在左轮,定期调头后,两侧车轮交替承受疲劳载荷;现场中轮轨廓形演化和轨底坡误差等是Ⅰ类疲劳区扩大和向外侧移动的直接原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号