共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
编-解码结构的卷积神经网络是近年来出现的一类高准确率的图像语义分割方法,但是参数量大、对算力要求高的特点,束缚了其在无人驾驶、道路监控、遥感分类以及移动端物体检测等算力有限、实时性强的领域中的应用.针对以上问题,首先设计空洞卷积组合模块—NG-APC模块,通过规范空洞率,在扩大感受野的同时解决空洞卷积中的栅格问题;再利... 相似文献
3.
随着计算机技术的发展,基于深度学习的医学图像自动分割已经成为人工智能辅助医疗的重要研究方向.为弥补现有神经网络结构对信息提取不足而产生的边缘细节丢失问题,构建了一种基于多维度特征提取网络(RDD-UNet)模型,该模型是基于残差UNet和混合损失函数的三维分割网络,以向肝脏肿瘤分割方法提供高精度的脏器分割结果.首先,该网络从原始CT数据的3个轴向提取信息,以长短跳跃连接的组合形式融合多尺度语义特征,保证了层内和层间信息的充分利用.其次,网络中设计了不平衡深度可分离空洞卷积模块,在提升三维网络计算效率的同时,扩大了体素级别的特征感受范围.最后,针对小尺寸分割目标数据不平衡问题提出了混合损失函数,并与深度监督结构相结合,提升了边缘细节的分割效果.该网络模型从体素、轴向和网络层级3个维度上充分提取特征信息,提高了肝脏分割的准确率,在公共数据集LiTS 2017上的Dice分数达到0.965 2,与其他方法相比达到了较高的精度水平. 相似文献
4.
脑肿瘤是目前世界上最致命的肿瘤之一,所以脑肿瘤图像的自动分割在临床诊疗中变得日益重要.近年来,基于CNN和Transformer的脑肿瘤分割方法在医学图像分割领域取得了令人欣喜的成就.然而,大多数方法没有充分利用脑肿瘤多模态间的互补性和差异性,并且模型中的Transformer在捕获远程依赖性的同时,忽略了其较大的计算复杂性、冗余依赖性等问题.针对此问题,提出一种基于多模态融合和自适应剪枝Transformer的脑肿瘤图像分割方法(MF-MAPT Swin UNETR),其中多模态融合模块可以充分学习性质相近的模态间信息和不同模态不同尺度的特征变化,为后续分割提供了充分的准备;基于多模态的自适应剪枝Transformer可以降低计算复杂度,对提升性能有一定的帮助,将MF-MAPT Swin UNETR模型在两个公共数据集上进行了实验验证,结果表明,该模型较最先进的方法整体具有突出的分割性能. 相似文献
5.
岩屑的岩性识别是地质工作中的一项重要内容。为解决传统人工鉴别岩性的低效问题和通用机器学习模型在岩屑岩性识别上的不适用性,包括准确率欠佳、网络参数冗杂、网络效率低下,针对岩屑图像的特征设计了一种岩屑图像的语义分割网络Debseg-Net,该网络采用编解码结构,卷积与转置卷积结合实现对岩屑图像特征的提取与像素级分类,采用深度可分离卷积减少参数量从而可进一步加深网络,使用跳级连接避免迭代过程中的信息丢失。同时提出了一种高效的岩屑图像自标记方法。经多次实验,Debseg-Net在10口探井收集的640张共计5类岩屑图像数据集上,识别准确率达到98.43%,平均交并比达到90.01%,领先同类型分割网络2.59%~7.04%,在实现数字化岩屑录井进程中提供了方法。 相似文献
6.
为提高脑肿瘤磁共振图像分割精度,在U-Net图像分割方法基础上,提出了一种引入注意力机制的深度学习改进模型,利用全局上下文信息,使模型重点关注需要分割区域的特征,并抑制无关的特征,以此提高模型的分割精度,同时引入残差块来加速模型的训练.实验结果表明:提出的改进模型相比U-Net方法,脑肿瘤MRI图像的分割精度有了提高,... 相似文献
7.
针对原始SegNet网络模型存在的参数数量多、 梯度不稳定及分割精度低等问题, 提出一种通过构建SegNet与带残差的bottleneck块、 深度可分离卷积以及跳跃连接结构相结合的改进模型. 在航空和卫星遥感图像数据集上进行实验的结果表明, 改进后的网络模型在精确率、 召回率及F1值等性能评价指标上均获得更优结果, 表明改进的网络模型在遥感图像建筑物分割任务中有良好的实用价值. 相似文献
8.
医学图像分割是图像处理的重要环节,而细胞核分割结果是病理学家进行癌症分类和评级的重要依据,提高其分割的准确率一直是研究的热点。但由于同器官的不同细胞核存在形态可能不一样、细胞之间相互重叠、细胞边界不清楚等现象,导致细胞核图像难以准确分割。为提高相互接触和重叠细胞核分割的准确性和精确率,本研究提出一种新型的细胞核分割网络模型。该模型首先是对原始细胞图进行ZCA白化预处理,并基于经典的U-Net网络结构,通过U-Net和ResNet残差模块进行训练,使用Batch Normalization方法实现数据归一化处理,解决训练过程中梯度震荡问题。在MoNuSeg和ISBI2018Cell两个数据集上的实验结果表明,本研究所提出的模型的分割准确率较高,分割出的细胞没有出现细胞核大面积粘连的现象,细胞核轮廓更加清晰。本研究所提的分割网络基于经典的U-Net网络结构,通过构造ResNet残差模块实现对细胞核上下文特征的提取,同时在残差模块使用Batch Normalization使得梯度的传输更加便捷,减少了训练时间,而且在分割相互接触的细胞核时,具有精确定位和准确分割的能力,是一种有效的细胞核分割方法。 相似文献
9.
利用脑肿瘤核磁共振(Magnetic resonance,MR)图像提供的关于肿瘤和脑组织的形状、大小与定位等信息准确地分割出脑肿瘤区域,对监测脑肿瘤患者的肿瘤生长或缩小、制定手术或放化疗计划都起着重要的作用.探讨了脑肿瘤MR图像分割的背景与意义,整理了脑肿瘤分割方法中常用的评估指标以及实验数据库的发展过程.基于脑肿瘤... 相似文献
10.
障碍物检测是无人驾驶车辆环境感知重要的组成部分,语义分割技术能够对障碍物进行像素级检测。为满足无人车系统的实时性要求和对障碍物检测精度要求,提出了一种轻量级语义分割模型。该模型构建了特征提取块,通过跳跃层结构将底层级特征与高层级特征相融合,用于提取更加细化的图像特征信息。运用深度可分离卷积代替标准卷积操作,减少了模型参数量和计算量。利用不同膨胀率的膨胀卷积以获取多尺度目标信息,在上采样时融合不同尺度的特征信息,使得语义信息更加丰富。试验结果表明:提出的轻量级语义分割模型在Cityscapes数据集和ApolloScape数据集上取得了较好的障碍物检测结果,同时也满足无人车的实时性要求。 相似文献
11.
近年来,基于深度学习的语义分割方法得到了广泛应用.本文针对实际遥感图像中的语义分割问题,为了减少网络参数和计算量,以及提高网络性能,提出了一个使用通道注意力机制的卷积神经网络(channel attention network,CA-Net).首先,对高分二号(GF-2)遥感图像进行预处理和数据标注,得到一个7分类数据... 相似文献
12.
近年来,基于卷积神经网络(CNN)的单幅图像超分辨率重构得到了广泛应用﹒然而,随着网络不断加深,也同时出现了参数过多、计算代价过大和难以训练等问题﹒为解决上述问题,提出一种新的深度残差密集网络(DRDN)框架并应用于单幅图像超分辨率重建﹒首先,网络通过密集连接充分利用了低分辨率图像从浅层到深层的各层特征,为超分辨率重构提供更多的低分辨率图像信息;其次,为了充分融合全局特征信息,通过残差学习的方式进行融合重构,同时为了缓解深层网络带来的训练困难等问题,网络采用多路跳步连接,使误差更加快速地传到各层网络;最后,将该方法与深度递归残差网络(DRRN)方法在公共数据集上进行了实验比较,结果表明DRDN在网络稳定性、时间效率、收敛速度和重建效果等方面都优于DRRN﹒ 相似文献
13.
【目的】油页岩中有机质的密度远低于其他岩石基质,因此,在CT图像中有机质的灰度值往往接近于孔隙裂隙的灰度值,从而在图像中表现为灰度值差异不明显,有机质和岩石的边界模糊等问题。【方法】为了精准识别分割出油页岩CT图像中的有机质,对深度学习领域的图像分割方法进行研究,并自主搭建了描述有机质分割的OM-Unet语义分割网络架构。通过在传统Unet模型中引入混合空洞卷积模块、由粗到精的部署策略和轻量化自适应特征融合模块,利用卷积神经网络识别分割油页岩CT图像中的有机质,并结合MIoU等评价指标对其分割效果进行评估。【结果】OM-Unet模型的MIoU为80.66%,相较于三相分割方法、Unet、CBAM-Unet、DeepLabV3、HDC-Unet和LAFF-Unet模型分别增加了8.01%、17.68%、9.5%、2.54%、2.83%和9.13%.OM-Unet模型的MPA为89.16%,相较于三相分割方法、Unet、CBAM-Unet、DeepLabV3、HDC-Unet和LAFF-Unet模型分别增加了12.85%、20.62%、15.82%、8.81%、9.55%和15.34%.【... 相似文献
14.
由于脑肿瘤的大小和形状呈不规则状态,从三维磁共振图像中自动分割脑肿瘤是一项具有挑战性的任务.而目前的方法存在两个问题:基于3D建模的方法参数量较大难以训练而且全局或远距离上、下文信息的关联性不足;模型忽略局部区域细节特征使得分割结果边界模糊.为解决上述问题,本文提出了循环分层解耦卷积和最大滤波(recurrent hierarchical-decoupled convolution and maximum filtering,RHMF)的轻量网络实现三维脑肿瘤图像分割.该网络在特征提取阶段提出循环分层解耦卷积取代标准卷积,减少参数利用多时域的反馈信息建立全局上、下文信息关联.引入改进的多尺度策略对不同尺度下的多层次特征进行提取融合,提高网络的目标识别能力.在定位阶段做局部域细节处理,提出了最大滤波模块激活目标区域像素实现特征图的像素级定位,增强目标区域像素与其他区域像素的区别,进一步细化分割,解决边界模糊问题.在BraTS2020数据集上的实验结果表明,RHMF-Net在增强肿瘤区、整体肿瘤区和核心肿瘤区的平均Dice系数值分别为77.23%、90.01%和83.10%,参数量为0.4... 相似文献
15.
在金矿研磨过程中,矿石粒度大小对后期黄金冶炼起着至关重要的作用,是一个不可忽略的关键参数。为解决图像分割中多数矿石表面不规则、棱角多,粘连等问题,通过结合注意力与多尺度空洞卷积的Vit Transformer模型研究了矿石图像分割。首先使用ResNet34作为下采样主干,增强对金矿石的特征提取能力;其次采用Transformer模块解决长距离依赖问题,融合复合通道注意力空洞模块提升网络对金矿石边缘特征的提取能力,提高了网络的抗干扰能力并扩大感受野。实验结果表明:本文算法准确率达到95.84%,Dice系数达到94.69%,交并比(IoU)达到90.39%,错误率低至7.83%。与其他算法对比,本文方法精度、Dice系数、IoU更高,可以较好地完成矿石图像分割任务。 相似文献
16.
17.
在Tamura纹理特征和支持向量机(SVM)算法基础上提出一种多模态脑肿瘤图像分割算法.将4种模态下的多序列核磁共振图像(MRI)的局部灰度特征与Tamura纹理度量相结合,尽可能提取足够多的图像信息;在SVM模型中输入已知样本并进行训练;用训练好的SVM模型处理其他脑肿瘤图像.实验通过对20例患者的图像进行展开,从实验数据来看,提出的方法可以精准有效地分割出脑肿瘤区域,得到脑肿瘤的边界,并且对脑肿瘤图像的差异性表现出较强的自适应能力. 相似文献
18.
针对现有的皮肤镜图像分割算法存在边缘分割时效果较差和对中小目标的识别能力较弱等问题。本文提出了一种基于多尺度注意力融合的分割网络MAU-Net(Multi-scale attention U-Net)。MAU-Net网络是以U-Net网络为基础的分割模型,通过本文设计的多尺度注意力模块(MA),在特征提取时融合不同层次的特征,并将重要的目标特征给与一定的权重,从而使网络能更快和更精准的分割出目标区域。实验结果显示,在ISIC2017数据集上平均交并比(MIOU)、精确度(PRE)和kappa值分别为83.61%、93.58%和81.70%,性能比U-Net分别提高了5.27%、2.01%和6.83%;并在ISIC2017挑战赛数据集上进行了消融实验,实验结果验证了MA模型有助于网络性能的提升。本文提出的MAU-Net网络在皮肤病变分割任务中表现优异,同时具有良好的泛化性能。 相似文献
19.
针对传统方法在古代壁画图像分割过程中出现的目标边界模糊、图像分割效率低等问题,提出一种基于PSPNet网络的多分类壁画图像分割模型(PSP-M).模型首先融合轻量级神经网络MobileNetV2,降低硬件条件对于模型训练的限制.其次通过全局金字塔模块,将不同级别的特征图拼接起来,避免了表征不同子区域之间关系的语境信息的丢失.最后利用金字塔场景解析网络嵌入壁画背景特征,减少特征损失的同时提高特征提取效率.实验结果表明,PSP-M模型较传统的图像分割模型在训练精确度上平均提升2%,峰值信噪比(PSNR)较实验对比模型平均提高1~2 dB,结构相似指标(SSIM)指标较实验对比模型平均提高0.1~0.2,实验验证了PSP-M模型在壁画分割方面的可行性. 相似文献
20.
在车道线检测任务中,由于车道线的特点和获取更大范围感受野的需求,空洞卷积被广泛使用.然而,为了获取大范围信息,空洞卷积会造成卷积点附近信息的丢失.针对以上问题,提出了一种基于多尺度复合卷积和图像分割融合的车道线检测算法.首先将不同尺寸的空洞卷积、全卷积和标准卷积结合以弥补空洞卷积造成的信息丢失;然后通过语义分割和实例分割融合的图像分割融合模块来增强实例分割网络对全局特征的关注;最后,设计一个加权交叉熵损失函数对网络进行训练和优化.实验结果表明,算法在CULane数据集中的整体F1measure取得74.9%,整体性能优于比较算法,在多种挑战性环境中均有所提升. 相似文献