共查询到20条相似文献,搜索用时 0 毫秒
1.
Mature cortical pyramidal neurons receive excitatory inputs onto small protrusions emanating from their dendrites called spines. Spines undergo activity-dependent remodelling, stabilization and pruning during development, and similar structural changes can be triggered by learning and changes in sensory experiences. However, the biochemical triggers and mechanisms of de novo spine formation in the developing brain and the functional significance of new spines to neuronal connectivity are largely unknown. Here we develop an approach to induce and monitor de novo spine formation in real time using combined two-photon laser-scanning microscopy and two-photon laser uncaging of glutamate. Our data demonstrate that, in mouse cortical layer 2/3 pyramidal neurons, glutamate is sufficient to trigger de novo spine growth from the dendrite shaft in a location-specific manner. We find that glutamate-induced spinogenesis requires opening of NMDARs (N-methyl-D-aspartate-type glutamate receptors) and activation of protein kinase A (PKA) but is independent of calcium-calmodulin-dependent kinase II (CaMKII) and tyrosine kinase receptor B (TrkB) receptors. Furthermore, newly formed spines express glutamate receptors and are rapidly functional such that they transduce presynaptic activity into postsynaptic signals. Together, our data demonstrate that early neural connectivity is shaped by activity in a spatially precise manner and that nascent dendrite spines are rapidly functionally incorporated into cortical circuits. 相似文献
2.
The Rho family of GTPases have important roles in the morphogenesis of the dendritic spines of neurons in the brain and synaptic plasticity by modulating the organization of the actin cytoskeleton. Here we used two-photon fluorescence lifetime imaging microscopy to monitor the activity of two Rho GTPases-RhoA and Cdc42-in single dendritic spines undergoing structural plasticity associated with long-term potentiation in CA1 pyramidal neurons in cultured slices of rat hippocampus. When long-term volume increase was induced in a single spine using two-photon glutamate uncaging, RhoA and Cdc42 were rapidly activated in the stimulated spine. These activities decayed over about five minutes, and were then followed by a phase of persistent activation lasting more than half an hour. Although active RhoA and Cdc42 were similarly mobile, their activity patterns were different. RhoA activation diffused out of the stimulated spine and spread over about 5 μm along the dendrite. In contrast, Cdc42 activation was restricted to the stimulated spine, and exhibited a steep gradient at the spine necks. Inhibition of the Rho-Rock pathway preferentially inhibited the initial spine growth, whereas the inhibition of the Cdc42-Pak pathway blocked the maintenance of sustained structural plasticity. RhoA and Cdc42 activation depended on Ca(2+)/calmodulin-dependent kinase (CaMKII). Thus, RhoA and Cdc42 relay transient CaMKII activation to synapse-specific, long-term signalling required for spine structural plasticity. 相似文献
3.
Many lines of evidence suggest that memory in the mammalian brain is stored with distinct spatiotemporal patterns. Despite recent progresses in identifying neuronal populations involved in memory coding, the synapse-level mechanism is still poorly understood. Computational models and electrophysiological data have shown that functional clustering of synapses along dendritic branches leads to nonlinear summation of synaptic inputs and greatly expands the computing power of a neural network. However, whether neighbouring synapses are involved in encoding similar memory and how task-specific cortical networks develop during learning remain elusive. Using transcranial two-photon microscopy, we followed apical dendrites of layer 5 pyramidal neurons in the motor cortex while mice practised novel forelimb skills. Here we show that a third of new dendritic spines (postsynaptic structures of most excitatory synapses) formed during the acquisition phase of learning emerge in clusters, and that most such clusters are neighbouring spine pairs. These clustered new spines are more likely to persist throughout prolonged learning sessions, and even long after training stops, than non-clustered counterparts. Moreover, formation of new spine clusters requires repetition of the same motor task, and the emergence of succedent new spine(s) accompanies the strengthening of the first new spine in the cluster. We also show that under control conditions new spines appear to avoid existing stable spines, rather than being uniformly added along dendrites. However, succedent new spines in clusters overcome such a spatial constraint and form in close vicinity to neighbouring stable spines. Our findings suggest that clustering of new synapses along dendrites is induced by repetitive activation of the cortical circuitry during learning, providing a structural basis for spatial coding of motor memory in the mammalian brain. 相似文献
4.
Categorization is a process by which the brain assigns meaning to sensory stimuli. Through experience, we learn to group stimuli into categories, such as 'chair', 'table' and 'vehicle', which are critical for rapidly and appropriately selecting behavioural responses. Although much is known about the neural representation of simple visual stimulus features (for example, orientation, direction and colour), relatively little is known about how the brain learns and encodes the meaning of stimuli. We trained monkeys to classify 360 degrees of visual motion directions into two discrete categories, and compared neuronal activity in the lateral intraparietal (LIP) and middle temporal (MT) areas, two interconnected brain regions known to be involved in visual motion processing. Here we show that neurons in LIP--an area known to be centrally involved in visuo-spatial attention, motor planning and decision-making-robustly reflect the category of motion direction as a result of learning. The activity of LIP neurons encoded directions of motion according to their category membership, and that encoding shifted after the monkeys were retrained to group the same stimuli into two new categories. In contrast, neurons in area MT were strongly direction selective but carried little, if any, explicit category information. This indicates that LIP might be an important nexus for the transformation of visual direction selectivity to more abstract representations that encode the behavioural relevance, or meaning, of stimuli. 相似文献
5.
Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex 总被引:36,自引:0,他引:36
Do new synapses form in the adult cortex to support experience-dependent plasticity? To address this question, we repeatedly imaged individual pyramidal neurons in the mouse barrel cortex over periods of weeks. We found that, although dendritic structure is stable, some spines appear and disappear. Spine lifetimes vary greatly: stable spines, about 50% of the population, persist for at least a month, whereas the remainder are present for a few days or less. Serial-section electron microscopy of imaged dendritic segments revealed retrospectively that spine sprouting and retraction are associated with synapse formation and elimination. Experience-dependent plasticity of cortical receptive fields was accompanied by increased synapse turnover. Our measurements suggest that sensory experience drives the formation and elimination of synapses and that these changes might underlie adaptive remodelling of neural circuits. 相似文献
6.
Dendritic spines of pyramidal neurons in the cerebral cortex undergo activity-dependent structural remodelling that has been proposed to be a cellular basis of learning and memory. How structural remodelling supports synaptic plasticity, such as long-term potentiation, and whether such plasticity is input-specific at the level of the individual spine has remained unknown. We investigated the structural basis of long-term potentiation using two-photon photolysis of caged glutamate at single spines of hippocampal CA1 pyramidal neurons. Here we show that repetitive quantum-like photorelease (uncaging) of glutamate induces a rapid and selective enlargement of stimulated spines that is transient in large mushroom spines but persistent in small spines. Spine enlargement is associated with an increase in AMPA-receptor-mediated currents at the stimulated synapse and is dependent on NMDA receptors, calmodulin and actin polymerization. Long-lasting spine enlargement also requires Ca2+/calmodulin-dependent protein kinase II. Our results thus indicate that spines individually follow Hebb's postulate for learning. They further suggest that small spines are preferential sites for long-term potentiation induction, whereas large spines might represent physical traces of long-term memory. 相似文献
7.
The regulated degradation of proteins by the ubiquitin proteasome pathway is emerging as an important modulator of synaptic function and plasticity. The proteasome is a large, multi-subunit cellular machine that recognizes, unfolds and degrades target polyubiquitinated proteins. Here we report NMDA (N-methyl-D-aspartate) receptor-dependent redistribution of proteasomes from dendritic shafts to synaptic spines upon synaptic stimulation, providing a mechanism for local protein degradation. Using a proteasome-activity reporter and local perfusion, we show that synaptic stimulation regulates proteasome activity locally in the dendrites. We used restricted photobleaching of individual spines and dendritic shafts to reveal the dynamics that underlie proteasome sequestration, and show that activity modestly enhances the entry rate of proteasomes into spines while dramatically reducing their exit rate. Proteasome sequestration is persistent, reflecting an association with the actin-based cytoskeleton. Together, our data indicate that synaptic activity can promote the recruitment and sequestration of proteasomes to locally remodel the protein composition of synapses. 相似文献
8.
The dendritic spine is a basic structural unit of neuronal organization. It is assumed to be a primary locus of synaptic plasticity, and to undergo long-term morphological and functional changes, at least some of which are regulated by intracellular calcium concentrations. It is known that physiological stimuli can cause marked increases in intracellular calcium levels in hippocampal dendritic shafts, but it is completely unknown to what extent such changes in the dendrites would also be seen by calcium-sensing structures within spines. Will calcium levels in all spines change in parallel with the dendrite or will there be a heterogeneous response? This study, through direct visualization and measurement of intracellular calcium concentrations in individual living spines, demonstrates that experimentally evoked changes in calcium concentrations in the dendritic shaft ([Ca2+]d). 相似文献
9.
Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex 总被引:14,自引:0,他引:14
Iwasato T Datwani A Wolf AM Nishiyama H Taguchi Y Tonegawa S Knöpfel T Erzurumlu RS Itohara S 《Nature》2000,406(6797):726-731
In the rodent primary somatosensory cortex, the configuration of whiskers and sinus hairs on the snout and of receptor-dense zones on the paws is topographically represented as discrete modules of layer IV granule cells (barrels) and thalamocortical afferent terminals. The role of neural activity, particularly activity mediated by NMDARs (N-methyl-D-aspartate receptors), in patterning of the somatosensory cortex has been a subject of debate. We have generated mice in which deletion of the NMDAR1 (NR1) gene is restricted to excitatory cortical neurons, and here we show that sensory periphery-related patterns develop normally in the brainstem and thalamic somatosensory relay stations of these mice. In the somatosensory cortex, thalamocortical afferents corresponding to large whiskers form patterns and display critical period plasticity, but their patterning is not as distinct as that seen in the cortex of normal mice. Other thalamocortical patterns corresponding to sinus hairs and digits are mostly absent. The cellular aggregates known as barrels and barrel boundaries do not develop even at sites where thalamocortical afferents cluster. Our findings indicate that cortical NMDARs are essential for the aggregation of layer IV cells into barrels and for development of the full complement of thalamocortical patterns. 相似文献
10.
Foci of orientation plasticity in visual cortex 总被引:5,自引:0,他引:5
Cortical areas are generally assumed to be uniform in their capacity for adaptive changes or plasticity. Here we demonstrate, however, that neurons in the cat striate cortex (V1) show pronounced adaptation-induced short-term plasticity of orientation tuning primarily at specific foci. V1 neurons are clustered according to their orientation preference in iso-orientation domains that converge at singularities or pinwheel centres. Although neurons in pinwheel centres have similar orientation tuning and responses to those in iso-orientation domains, we find that they differ markedly in their capacity for adaptive changes. Adaptation with an oriented drifting grating stimulus alters responses of neurons located at and near pinwheel centres to a broad range of orientations, causing repulsive shifts in orientation preference and changes in response magnitude. In contrast, neurons located in iso-orientation domains show minimal changes in their tuning properties after adaptation. The anisotropy of adaptation-induced orientation plasticity is probably mediated by inhomogeneities in local intracortical interactions that are overlaid on the map of orientation preference in V1. 相似文献
11.
The individual functional properties and spatial arrangement of afferent synaptic inputs on dendrites have a critical role in the processing of information by neurons in the mammalian brain. Although recent work has identified visually-evoked local dendritic calcium signals in the rodent visual cortex, sensory-evoked signalling on the level of dendritic spines, corresponding to individual afferent excitatory synapses, remains unexplored. Here we used a new variant of high-resolution two-photon imaging to detect sensory-evoked calcium transients in single dendritic spines of mouse cortical neurons in vivo. Calcium signals evoked by sound stimulation required the activation of NMDA (N-methyl-D-aspartate) receptors. Active spines are widely distributed on basal and apical dendrites and pure-tone stimulation at different frequencies revealed both narrowly and widely tuned spines. Notably, spines tuned for different frequencies were highly interspersed on the same dendrites: even neighbouring spines were mostly tuned to different frequencies. Thus, our results demonstrate that NMDA-receptor-dependent single-spine synaptic inputs to the same dendrite are highly heterogeneous. Furthermore, our study opens the way for in vivo mapping of functionally defined afferent sensory inputs with single-synapse resolution. 相似文献
12.
13.
Long-term dendritic spine stability in the adult cortex 总被引:21,自引:0,他引:21
The structural dynamics of synapses probably has a crucial role in the development and plasticity of the nervous system. In the mammalian brain, the vast majority of excitatory axo-dendritic synapses occur on dendritic specializations called 'spines'. However, little is known about their long-term changes in the intact developing or adult animal. To address this question we developed a transcranial two-photon imaging technique to follow identified spines of layer-5 pyramidal neurons in the primary visual cortex of living transgenic mice expressing yellow fluorescent protein. Here we show that filopodia-like dendritic protrusions, extending and retracting over hours, are abundant in young animals but virtually absent from the adult. In young mice, within the 'critical period' for visual cortex development, approximately 73% of spines remain stable over a one-month interval; most changes are associated with spine elimination. In contrast, in adult mice, the overwhelming majority of spines (approximately 96%) remain stable over the same interval with a half-life greater than 13 months. These results indicate that spines, initially plastic during development, become remarkably stable in the adult, providing a potential structural basis for long-term information storage. 相似文献
14.
Although information storage in the central nervous system is thought to be primarily mediated by various forms of synaptic plasticity, other mechanisms, such as modifications in membrane excitability, are available. Local dendritic spikes are nonlinear voltage events that are initiated within dendritic branches by spatially clustered and temporally synchronous synaptic input. That local spikes selectively respond only to appropriately correlated input allows them to function as input feature detectors and potentially as powerful information storage mechanisms. However, it is currently unknown whether any effective form of local dendritic spike plasticity exists. Here we show that the coupling between local dendritic spikes and the soma of rat hippocampal CA1 pyramidal neurons can be modified in a branch-specific manner through an N-methyl-d-aspartate receptor (NMDAR)-dependent regulation of dendritic Kv4.2 potassium channels. These data suggest that compartmentalized changes in branch excitability could store multiple complex features of synaptic input, such as their spatio-temporal correlation. We propose that this 'branch strength potentiation' represents a previously unknown form of information storage that is distinct from that produced by changes in synaptic efficacy both at the mechanistic level and in the type of information stored. 相似文献
15.
Cortical plasticity seems to be critical for the establishment of permanent memory traces. Little is known, however, about the molecular and cellular processes that support consolidation of memories in cortical networks. Here we show that mice heterozygous for a null mutation of alpha-calcium-calmodulin kinase II (alpha-CaMKII+/-) show normal learning and memory 1-3 days after training in two hippocampus-dependent tasks. However, their memory is severely impaired at longer retention delays (10-50 days). Consistent with this, we found that alpha-CaMKII+/- mice have impaired cortical, but not hippocampal, long-term potentiation. Our results represent a first step in unveiling the molecular and cellular mechanisms underlying the establishment of permanent memories, and they indicate that alpha-CaMKII may modulate the synaptic events required for the consolidation of memory traces in cortical networks. 相似文献
16.
Internal brain states form key determinants for sensory perception, sensorimotor coordination and learning. A prominent reflection of different brain states in the mammalian central nervous system is the presence of distinct patterns of cortical synchrony, as revealed by extracellular recordings of the electroencephalogram, local field potential and action potentials. Such temporal correlations of cortical activity are thought to be fundamental mechanisms of neuronal computation. However, it is unknown how cortical synchrony is reflected in the intracellular membrane potential (V(m)) dynamics of behaving animals. Here we show, using dual whole-cell recordings from layer 2/3 primary somatosensory barrel cortex in behaving mice, that the V(m) of nearby neurons is highly correlated during quiet wakefulness. However, when the mouse is whisking, an internally generated state change reduces the V(m) correlation, resulting in a desynchronized local field potential and electroencephalogram. Action potential activity was sparse during both quiet wakefulness and active whisking. Single action potentials were driven by a large, brief and specific excitatory input that was not present in the V(m) of neighbouring cells. Action potential initiation occurs with a higher signal-to-noise ratio during active whisking than during quiet periods. Therefore, we show that an internal brain state dynamically regulates cortical membrane potential synchrony during behaviour and defines different modes of cortical processing. 相似文献
17.
Electrical microstimulation can establish causal links between the activity of groups of neurons and perceptual and cognitive functions. However, the number and identities of neurons microstimulated, as well as the number of action potentials evoked, are difficult to ascertain. To address these issues we introduced the light-gated algal channel channelrhodopsin-2 (ChR2) specifically into a small fraction of layer 2/3 neurons of the mouse primary somatosensory cortex. ChR2 photostimulation in vivo reliably generated stimulus-locked action potentials at frequencies up to 50 Hz. Here we show that naive mice readily learned to detect brief trains of action potentials (five light pulses, 1 ms, 20 Hz). After training, mice could detect a photostimulus firing a single action potential in approximately 300 neurons. Even fewer neurons (approximately 60) were required for longer stimuli (five action potentials, 250 ms). Our results show that perceptual decisions and learning can be driven by extremely brief epochs of cortical activity in a sparse subset of supragranular cortical pyramidal neurons. 相似文献
18.
19.
Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2 总被引:1,自引:0,他引:1
Synaptic transmission from excitatory nerve cells in the mammalian brain is largely mediated by AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors located at the surface of dendritic spines. The abundance of postsynaptic AMPA receptors correlates with the size of the synapse and the dimensions of the dendritic spine head. Moreover, long-term potentiation is associated with the formation of dendritic spines as well as synaptic delivery of AMPA receptors. The molecular mechanisms that coordinate AMPA receptor delivery and spine morphogenesis are unknown. Here we show that overexpression of the glutamate receptor 2 (GluR2) subunit of AMPA receptors increases spine size and density in hippocampal neurons, and more remarkably, induces spine formation in GABA-releasing interneurons that normally lack spines. The extracellular N-terminal domain (NTD) of GluR2 is responsible for this effect, and heterologous fusion proteins of the NTD of GluR2 inhibit spine morphogenesis. We propose that the NTD of GluR2 functions at the cell surface as part of a receptor-ligand interaction that is important for spine growth and/or stability. 相似文献
20.
Functional circuits in the adult neocortex adjust to novel sensory experience, but the underlying synaptic mechanisms remain unknown. Growth and retraction of dendritic spines with synapse formation and elimination could change brain circuits. In the apical tufts of layer 5B (L5B) pyramidal neurons in the mouse barrel cortex, a subset of dendritic spines appear and disappear over days, whereas most spines are persistent for months. Under baseline conditions, new spines are mostly transient and rarely survive for more than a week. Transient spines tend to be small, whereas persistent spines are usually large. Because most excitatory synapses in the cortex occur on spines, and because synapse size and the number of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors are proportional to spine volume, the excitation of pyramidal neurons is probably driven through synapses on persistent spines. Here we test whether the generation and loss of persistent spines are enhanced by novel sensory experience. We repeatedly imaged dendritic spines for one month after trimming alternate whiskers, a paradigm that induces adaptive functional changes in neocortical circuits. Whisker trimming stabilized new spines and destabilized previously persistent spines. New-persistent spines always formed synapses. They were preferentially added on L5B neurons with complex apical tufts rather than simple tufts. Our data indicate that novel sensory experience drives the stabilization of new spines on subclasses of cortical neurons. These synaptic changes probably underlie experience-dependent remodelling of specific neocortical circuits. 相似文献