首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Regulated protein degradation by ATP-dependent proteases plays a fundamental role in the biogenesis of mitochondria. Membrane-bound and soluble ATP-dependent proteases have been identified in various subcompartments of this organelle. Subunits composing these proteases are evolutionarily conserved from yeast to humans and, in support of an endosymbiotic origin of mitochondria, evolved from prokaryotic ancestors: the PIM1/Lon protease is active in the matrix of mitochondria, while the i-AAA protease and the m-AAA protease mediate the turnover of inner membrane proteins. Most of the knowledge concerning the biogenesis and the physiological role of ATP-dependent proteases comes from studies in the yeast Saccharomyces cerevisiae. Proteases were found to be required for mitochondrial stasis, for the maintenance of the morphology of the organelle and for mitochondrial genome integrity. ATP-dependent proteolysis is crucial for the expression of mitochondrially encoded subunits of respiratory chain complexes and for the assembly of these complexes. Hence, mitochondrial ATP-dependent proteases exert multiple roles which are essential for the maintenance of cellular respiratory competence.  相似文献   

4.
5.
Interferon (IFN)-inducible proteins of the 1-8 gene family mediate homotypic adhesion and transduction of antiproliferative signals. Their induction correlates with inhibition of cell growth while they are often repressed in the course of malignant transformation and tumor development. Ras-mediated transformation of mouse mast cells is associated with downregulation of 1-8U expression and interferon-α (IFN-α) treatment reverts the proliferation rate to normal levels together with induction of 1-8U. Conversely, the antiproliferative responses of IFN-α in sensitive human melanoma cells are accompanied by 1-8U induction. Here we provide direct evidence that recombinant expression of 1-8U in human cell lines is sufficient to block cell proliferation. Based on the abundant expression and subcellular localization to the plasma membrane and exosome-like structures, we propose a model capable of explaining the pleiotropic functions of 1-8 family proteins in tumor cells and during normal development. Received 15 January 2003; received after revision 21 March 2003; accepted 25 March 2003 RID="*" ID="*"Corresponding author.  相似文献   

6.
MDA-MB-468 is a human mammary adenocarcinoma cell line that overexpresses the epidermal growth factor (EGF) receptor and undergoes programmed cell death (apoptosis) in response to EGF treatment. Programmed cell death was shown to be greatly enhanced when cells were growth-arrested prior to EGF treatment. Apoptosis was characterized by an initial rounding up and detachment of the cells from their substrate starting about 12 h after EGF treatment, followed by chromatin condensation, nuclear fragmentation and oligonucleosomal fragmentation of the DNA at about 24 to 48 h. Cell death was dependent on de novo protein synthesis. We found a rapid induction of c-fos, c-jun and junB at the mRNA level after about 30 min of EGF treatment and a more delayed upregulation of fosB and fra-1. The junD gene was expressed in the absence of EGF, and it was moderately induced within 30 min of growth factor addition. The increase of the different fos and jun mRNAs were paralleled by an increase of activator protein-1 (AP-1) DNA binding activity. A characterization of the AP-1 complex revealed similar levels of several Fos and Jun proteins. Based on the kinetics of AP-1 accumulation and cell death, it seems likely that AP-1 contributes to the apoptotic cell death of EGF receptor-overexpressing MDA-MB-468 cells. Received 21 July 1997; received after revision 6 November 1997; accepted 6 November 1997  相似文献   

7.
Various adenosine triphosphate (ATP)-dependent proteases were identified within mitochondria which mediate selective mitochondrial protein degradation and fulfill crucial functions in mitochondrial biogenesis. The matrix-localized PIM1 protease, a homologue of theEscherichia coli Lon protease, is required for respiration and maintenance of mitochondrial genome integrity. Degradation of non-native polypeptides by PIM1 protease depends on the chaperone activity of the mitochondrial Hsp70 system, posing intriguing questions about the relation between the proteolytic system and the folding machinery in mitochondria. The mitochondrial inner membrane harbors two ATP-dependent metallopeptidases, them- and thei-AAA protease, which expose their catalytic sites to opposite membrane surfaces and cooperate in the degradation of inner membrane proteins. In addition to its proteolytic activity, them-AAA protease has chaperone-like activity during the assembly of respiratory and ATP-synthase complexes. It constitutes a quality control system in the inner membrane for membrane-embedded protein complexes.  相似文献   

8.
9.
Jaspamide (jasplakinolide) is a natural peptide isolated from marine sponges of Jaspis species and has fungicidal and growth-inhibiting activities. We characterized the jasplakinolide-induced loss of viability by programmed cell death in the HL-60 human promyelocytic leukemia cell line and found that this process was accompanied by neutral endopeptidase (NEP)/CD10 expression on the surface of the apoptotic cells. HL-60 cells do not normally express detectable amounts of NEP/CD10 on their surface or intracytoplasmically, but upon jaspamide treatment, CD10 was synthesized de novo, its expression being inhibited by cycloheximide pretreatment. Once synthesized, NEP/CD10 interfered with the jasplakinolide signal delivered to HL-60 cells. Inhibition of NEP/CD10 by the NEP inhibitor phosphoramidon or by an anti-CD10 monoclonal antibody significantly increased apoptosis induction. The appearance of CD10 on the cell surface was blocked by preincubation of the cells with the monocytic/macrophage-differentiating agents vitamin D3 and phorbol 12-myristate 13-acetate, but not by the granulocytic differentiating agents retinoic acid or dimethyl sulfoxide. Moreover, in the promonocytic U937 and mature monocytic THP-1 cell lines, jaspamide induced apoptosis but not CD10 expression. In HL-60 cells, CD10 expression was partially but not totally blocked by the broad-spectrum caspase inhibitor benzyloxacarbonyl-Val-Ala-Asp-fluoromethylketone, indicating a connection between apoptosis induction and CD10 synthesis. Our findings suggest that the CD10 expression is related to the programmed cell death induction by jaspamide, and also with the process of granulocytic differentiation in HL-60 cells. Received 22 April 2002; received after revision 8 June 2002; accepted 10 June 2002  相似文献   

10.
We evaluated the energy metabolism of human mesenchymal stem cells (MSC) isolated from umbilical cord (UC) of preterm (< 37 weeks of gestational age) and term (≥ 37 weeks of gestational age) newborns, using MSC from adult bone marrow as control. A metabolic switch has been observed around the 34th week of gestational age from a prevalently anaerobic glycolysis to the oxidative phosphorylation. This metabolic change is associated with the organization of mitochondria reticulum: preterm MSCs presented a scarcely organized mitochondrial reticulum and low expression of proteins involved in the mitochondrial fission/fusion, compared to term MSCs. These changes seem governed by the expression of CLUH, a cytosolic messenger RNA-binding protein involved in the mitochondria biogenesis and distribution inside the cell; in fact, CLUH silencing in term MSC determined a metabolic fingerprint similar to that of preterm MSC. Our study discloses novel information on the production of energy and mitochondrial organization and function, during the passage from fetal to adult life, providing useful information for the management of preterm birth.  相似文献   

11.
Neuronal loss and neuritic/cytoskeletal lesions (synaptic disconnection and proliferation of dystrophic neurites) represent major dementia-associated abnormalities in Alzheimer’s disease (AD). This study examined the role of oxidative stress as a factor contributing to both the cell death and neuritic degeneration cascades in AD. Primary neuron cultures were treated with H2O2 (9–90 μM) or desferrioxamine (2–25 μM) for 24 h and then analyzed for viability, mitochondrial mass, mitochondrial function, and pro-apoptosis and sprouting gene expression. H2O2 treatment causes free-radical injury and desferrioxamine causes hypoxia-type injury without free radical generation. The H2O2-treated cells exhibited sustained viability but neurite retraction, impaired mitochondrial function, increased levels of the pro-apoptosis gene product CD95/Fas, reduced expression of N2J1-immunoreactive neuronal thread protein and synaptophysin, and reduced distribution of mitochondria in neuritic processes. Desferrioxamine treatment resulted in dose-dependent neuronal loss associated with impaired mitochondrial function, proliferation of neurites, and reduced expression of GAP-43, which has a role in path-finding during neurite outgrowth. The results suggest that oxidative stress can cause neurodegeneration associated with enhanced susceptibility to apoptosis due to activation of pro-apoptosis genes, neurite retraction (synaptic disconnection), and impaired transport of mitochondria to cell processes where they are likely required for synaptic function. In contrast, hypoxia-type injury causes neuronal loss with proliferation of neurites (sprouting), impaired mitochondrial function, and reduced expression of molecules required to form and maintain synaptic connections. Since similar abnormalities occur in AD, both oxidative stress and hypoxic injury can contribute to AD neurodegeneration. Received 24 May 2000; received after revision 7 July 2000; accepted 27 July 2000  相似文献   

12.
Fenretinide induces apoptosis in neuroblastoma by induction of reactive oxygen species (ROS). In this study, we investigated the role of mitochondria in fenretinide-induced cytotoxicity and ROS production in six neuroblastoma cell lines. ROS induction by fenretinide was of mitochondrial origin, demonstrated by detection of superoxide with MitoSOX, the scavenging effect of the mitochondrial antioxidant MitoQ and reduced ROS production in cells without a functional mitochondrial respiratory chain (Rho zero cells). In digitonin-permeabilized cells, a fenretinide concentration-dependent decrease in ATP synthesis and substrate oxidation was observed, reflecting inhibition of the mitochondrial respiratory chain. However, inhibition of the mitochondrial respiratory chain was not required for ROS production. Co-incubation of fenretinide with inhibitors of different complexes of the respiratory chain suggested that fenretinide-induced ROS production occurred via complex II. The cytotoxicity of fenretinide was exerted through the generation of mitochondrial ROS and, at higher concentrations, also through inhibition of the mitochondrial respiratory chain.  相似文献   

13.
14.
15.

The remodeling of the mitochondrial network is a critical process in maintaining cellular homeostasis and is intimately related to mitochondrial function. The interplay between the formation of new mitochondria (biogenesis) and the removal of damaged mitochondria (mitophagy) provide a means for the repopulation of the mitochondrial network. Additionally, mitochondrial fission and fusion serve as a bridge between biogenesis and mitophagy. In recent years, the importance of these processes has been characterised in multiple tissue- and cell-types, and under various conditions. In skeletal muscle, the robust remodeling of the mitochondrial network is observed, particularly after injury where large portions of the tissue/cell structures are damaged. The significance of mitochondrial remodeling in regulating skeletal muscle regeneration has been widely studied, with alterations in mitochondrial remodeling processes leading to incomplete regeneration and impaired skeletal muscle function. Needless to say, important questions related to mitochondrial remodeling and skeletal muscle regeneration still remain unanswered and require further investigation. Therefore, this review will discuss the known molecular mechanisms of mitochondrial network remodeling, as well as integrate these mechanisms and discuss their relevance in myogenesis and regenerating skeletal muscle.

  相似文献   

16.
Over the last years it has become evident that the nuclear envelope (NE) is more than a passive membrane barrier that separates the nucleus from the cytoplasm. The NE not only controls the trafficking of macromolecules between the nucleoplasm and the cytosol, but also provides anchoring sites for chromosomes and cytoskeleton to the nuclear periphery. Targeting of chromatin to the NE might actually be part of gene expression regulation in eukaryotes. Mutations in certain NE proteins are associated with a diversity of human diseases, including muscular dystrophy, neuropathy, lipodistrophy, torsion dystonia and the premature aging condition progeria. Despite the importance of the NE for cell division and differentiation, relatively little is known about its biogenesis and its role in human diseases. It is our goal to provide a comprehensive view of the NE and to discuss possible implications of NE-associated changes for gene expression, chromatin organization and signal transduction. Received 8 August 2005; received after revision 13 October 2005; accepted 13 October 2005  相似文献   

17.
The retinal circadian clock is crucial for optimal regulation of retinal physiology and function, yet its cellular location in mammals is still controversial. We used laser microdissection to investigate the circadian profiles and phase relations of clock gene expression and Period gene induction by light in the isolated outer (rods/cones) and inner (inner nuclear and ganglion cell layers) regions in wild-type and melanopsin-knockout (Opn 4 ?/? ) mouse retinas. In the wild-type mouse, all clock genes are rhythmically expressed in the photoreceptor layer but not in the inner retina. For clock genes that are rhythmic in both retinal compartments, the circadian profiles are out of phase. These results are consistent with the view that photoreceptors are a potential site of circadian rhythm generation. In mice lacking melanopsin, we found an unexpected loss of clock gene rhythms and of the photic induction of Per1-Per2 mRNAs only in the outer retina. Since melanopsin ganglion cells are known to provide a feed-back signalling pathway for photic information to dopaminergic cells, we further examined dopamine (DA) synthesis in Opn 4 ?/? mice. The lack of melanopsin prevented the light-dependent increase of tyrosine hydroxylase (TH) mRNA and of DA and, in constant darkness, led to comparatively high levels of both components. These results suggest that melanopsin is required for molecular clock function and DA regulation in the retina, and that Period gene induction by light is mediated by a melanopsin-dependent, DA-driven signal acting on retinal photoreceptors.  相似文献   

18.
Receptor tyrosine kinases (RTK) have long being studied with respect to the “canonical” signaling. This includes ligand-induced activation of a receptor tyrosine kinase at the cell surface that leads to receptor dimerization, followed by its phosphorylation in the intracellular domain and activation. The activated receptor then recruits cytoplasmic signaling molecules including other kinases. Activation of the downstream signaling cascade frequently leads to changes in gene expression following nuclear translocation of downstream targets. However, RTK themselves may localize within the nucleus, as either full-length molecules or cleaved fragments, with or without their ligands. Significant differences in this mechanism have been reported depending on the individual RTK, cellular context or disease. Accumulating evidences indicate that the colony-stimulating factor-1 receptor (CSF-1R) may localize within the nucleus. To date, however, little is known about the mechanism of CSF-1R nuclear shuttling, as well as the functional role of nuclear CSF-1R.  相似文献   

19.
The chloroplast is the hallmark organelle of plants. It performs photosynthesis and is therefore required for photoautotrophic plant growth. The chloroplast is the most prominent member of a family of related organelles termed plastids which are ubiquitous in plant cells. Biogenesis of the chloroplast from undifferentiated proplastids is induced by light. The generally accepted endosymbiont hypothesis states that chloroplasts have arisen from an internalized cyanobacterial ancestor. Although chloroplasts have maintained remnants of the ancestral genome (plastome), the vast majority of the genes encoding chloroplast proteins have been transferred to the nucleus. This poses two major challenges to the plant cell during chloroplast biogenesis: First, light and developmental signals must be interpreted to coordinately express genetic information contained in two distinct compartments. This is to ensure supply and stoichiometry of abundant chloroplast components. Second, developing chloroplasts must efficiently import nuclear encoded and cytosolically synthesized proteins. A subset of proteins, including such encoded by the plastome, must further be sorted to the thylakoid compartments for assembly into the photosynthetic apparatus. Received 1 September 2000; received after revision 27 October 2000; accepted 1 November 2000  相似文献   

20.
Mitochondria are highly dynamic organelles that continuously undergo two opposite processes, fission and fusion. Mitochondrial dynamics influence not only mitochondrial morphology, but also mitochondrial biogenesis, mitochondrial distribution within the cell, cell bioenergetics, and cell injury or death. Drp1 mediates mitochondrial fission, whereas Mfn1/2 and Opa1 control mitochondrial fusion. Neurons require large amounts of energy to carry out their highly specialized functions. Thus, mitochondrial dysfunction is a prominent feature in a variety of neurodegenerative diseases. Mutations of Mfn2 and Opa1 lead to neuropathies such as Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. Moreover, both Aβ peptide and mutant huntingtin protein induce mitochondrial fragmentation and neuronal cell death. In addition, mutants of Parkinson’s disease-related genes also show abnormal mitochondrial morphology. This review highlights our current understanding of abnormal mitochondrial dynamics relevant to neuronal synaptic loss and cell death in neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and Huntington’s disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号