共查询到14条相似文献,搜索用时 110 毫秒
1.
面向运动目标检测的ViBe算法改进 总被引:1,自引:0,他引:1
背景差分法是静态背景下运动目标检测的常用方法,ViBe算法是它的主要建模方法之一.针对ViBe算法对鬼影消除缓慢的问题,提出了结合帧间差分技术的ViBe改进算法,使用帧间差分技术通过记录相关像素值的时域变化来判断鬼影像素,提高消除鬼影的速度.针对ViBe算法的固定阈值不能反映每个像素具体情况的问题,提出了一种自适应阈值的方法,可根据像素值的变化为每个像素设定阈值,提高前景检测的准确度.实验结果表明,结合帧间差分技术的ViBe算法能够较快地消除检测结果中的鬼影,应用自适应阈值的ViBe算法能够更准确地进行前景检测. 相似文献
2.
提出一种基于阈值半径自适应更新及阴影与鬼影检测的改进型Vi Be算法,解决运动场景下Vi Be算法的目标提取效果易受背景高频扰动、摄像机抖动、阴影、鬼影的影响问题。算法设计中,依据当前帧的像素点梯度与背景图序列对应像素点的灰度均方差设计阈值自适应更新策略;依据背景图在HSV空间中的像素值设计阴影去除规则;利用前景-邻域直方图的相似度匹配规则设计鬼影清除规则。实验结果表明,改进型Vi Be算法在保留原有的高效性的同时,能够较好地消除视频图像中隐含的阴影和鬼影,以及抖动对目标提取的影响。 相似文献
3.
郭锋锋 《西昌学院学报(自然科学版)》2020,34(2):73-76
针对矿井下视频图像检测问题,提出一种改进ViBe的矸石检测算法。首先,划定ROI区域并进行图像转换和图像平滑,
降低计算量及环境噪声影响。然后从改进背景建模初始化方法和自适应阈值2个方面解决原始ViBe算法存在的“鬼影”问题
和背景扰动导致的检测效果欠佳问题。最后,计算检测到矸石的相对面积并与警戒值比较,判断画面中是否存在大块矸石。
实验证明,所提出的算法能够满足实时性,同时准确检测视频图像中出现的大块矸石,识别率达96.06%。 相似文献
4.
利用改进的Vi Be算法及模板匹配方法对多行人场景进行了目标检测.为了提高运动目标检测性能,提出将原Vi Be算法与帧间差分相结合的方法,该方法使二值图像中的鬼影比原Vi Be算法消除更为迅速.根据待处理像素点周围已完成的前背景分离结果,利用动态计算模型参数估计前背景,以提高前景目标提取的准确度.基于HOG算法识别运动目标中的行人目标.实验结果表明,该方法在没有降低运动物体检测实时性的同时,明显提高了算法检测的准确度. 相似文献
5.
ViBe算法是一种基于静态背景下的运动目标检测算法,针对其“鬼影”问题和运动目标静止时会被更新为背景的问题提出了改进ViBe算法,即对原ViBe算法的背景模型初始化、动态阈值、前景分割和背景模型更新等4个部分进行了改进。采用均值法获取的背景图像初始化背景模型,可消除“鬼影”;利用计数法控制前景分割动态阈值,使前景图像更加准确;使用帧差法思想改进前景分割,使前景图像更加完整;通过引入阈值保证背景模型更新的稳定性。根据试验结果可知,改进ViBe算法对正常移动车辆、较小运动目标和存在静止情况的运动目标都有较好的检测能力,解决了“鬼影”问题和运动目标静止时会被更新为背景的问题,同时相较于原ViBe算法和其他常用运动目标检测算法,改进ViBe算法在保证准确性的基础上提高了检测的完整性。 相似文献
6.
ViBe算法容易实现且运算效率高等优点,在运动目标检测等领域中获得广泛运用,但其也存在一些缺点,如鬼影、空洞、漏点以及运动目标检测不完整等问题,针对这些不足,从ViBe算法处理过程的主要阶段出发,提出一种改进的ViBe算法.首先用迭代累积背景法获取真实背景用来抑制鬼影问题,其次把真实背景分别用于帧差法和改进的ViBe算法中,帧差法可用来弥补视频序列帧中边界处像素点遗漏问题,改进的24领域ViBe算法用来提高模型精度,再把两个结果进行“或”运算,最后利用形态学进行处理用以消除小噪声干扰,使得到的目标更加完整.该算法能够去除噪声、抑制鬼影以及减少空洞点,实验结果表明,与传统的ViBe算法相比,能够有效抑制鬼影以及减少漏点问题,提高运动目标检测精确度. 相似文献
7.
针对光线变化时现有前景检测方法易将背景检测为运动目标、形成大片阴影的问题,本文利用帧差法对光线变化的不敏感性,对基于ViBe的背景建模、前景检测算法进行改进。结合帧间差分的ViBe前景检测方法包括背景初始化、背景模型更新及后期图像处理三个模块。该方法在更新背景模型时,加入了帧间差分判别多阈值比较,并依据帧间差分的结果对背景更新率进行动态调整,最后对背景建模后的检测结果进行形态学处理,针对大的噪点进行轮廓提取及判定,最终检测出运动目标。针对不同条件下监控视频的试验结果表明,本文方法初始化速度快、实时性好,有效地抑制了由于光线干扰形成的大片鬼影区域。 相似文献
8.
针对在目标运动检测中ViBe算法容易产生鬼影、缓慢移动的目标容易融入背景样本模型等问题,提出一种改进的ViBe算法,首先在使用ViBe算法检测到运动目标后,利用迭代自组织分析算法的阈值分割来进行鬼影判别;其次利用改进的Canny算子获得图像的边缘特征,当ViBe算法在更新目标边缘的背景样本模型时不对其邻域的样本模型进行更新,从而使得缓慢移动的目标融入背景样本模型的时间得以延长;最后通过形态学处理获得完整的运动目标.实验结果表明,与传统ViBe算法相比,本文算法在有鬼影的情况下能更快获得较高的检测准确率,在有缓慢移动目标的情况下准确率的下降时间更晚. 相似文献
9.
视觉背景提取(visual background extractor,ViBe)算法应用在车辆检测时存在一个比较明显的缺点,即当视频第1帧中存在待检测的移动车辆时,在后续帧的车辆检测过程中,对应第1帧中车辆的位置处会出现鬼影并且鬼影会持续一段时间才会彻底消失,从而干扰后续帧的检测效果。提出一种改进的ViBe建模方法,新方法在前n帧中实现初始模型的初始化,并结合ViBe算法的更新方法进行模型更新。在不同分辨率、不同场景的视频中对原算法和提出的改进方法进行对比实验,实验结果表明,在第1帧中不包含车辆和包含车辆2种情况下,提出的改进的算法都能有效地检测出移动车辆且不会产生鬼影的问题。因此,改进方法比原算法更有效和实用。 相似文献
10.
在动态背景下,由于双模型算法对运动目标检测时会出现误检、目标检测不完整和出现鬼影的现象,提出一种改进的双模型的运动目标检测算法。该算法首先对双模型背景的判断方式改进,将新来像素点图像值与背景模型对应位置样本值之间的距离和阈值进行比较,可以全面地区分前景和背景。然后对自适应阈值更新方式改进,通过对前景背景的判断情况把自模型和邻域模型结合起来,作为阈值增加或减少的条件,能够更精确地检测出前景。最后,结合帧间差分技术,通过比较对应位置像素值的时域变化来判断鬼影像素,以达到快速消除鬼影的目的。实验结果表明,改进算法的检测结果比原来的双模型更加精确、全面。 相似文献
11.
为解决视频监控系统中因光照变化、相似颜色干扰及快速动目标而导致的目标易丢失问题,提出一种改进ViBe算法与Meanshift结合的目标跟踪方法。首先采用三帧差分和ViBe算法结合进行前景目标提取和检测,以消除鬼影的干扰,利用色度特征和梯度特征相结合的方法来抑制阴影;同时通过将边缘特征融入到Meanshift算法中,引入运动矢量在当前帧中预测下一帧运动目标的位置,实现场面监视环境中运动目标的持续、准确跟踪。通过在监控视频中行人、车辆及飞行器等不同场面目标做实验,验证了本文方法不仅能够持续、准确地跟踪运动目标,并且可适用于场面雾天低能见度条件下的运动目标跟踪。 相似文献
12.
基于背景重构的运动目标检测算法 总被引:1,自引:1,他引:1
针对背景差分算法中的参考帧提取问题,引入动态时间弯折(DTW)算法,给出了一种新的基于块的背景重构方法。该算法根据相邻两帧图像所对应的背景区域灰度变化不大的特点,利用DTW算法从帧中提取出背景区域所对应的块,再确定出背景帧。仿真结果表明,即使是在图像存在几何畸变和部分像素点缺省的情况下该算法仍能准确地重构背景,实现对运动目标的提取。 相似文献
13.
车辆信息检测是车型识别在智慧交通领域中的首要任务。针对现有的车辆信息检测技术在检测速度、精度以及稳定性方面存在的问题,提出了基于YOLOv3的深度学习目标检测算法——YOLOv3-fass。该算法以DarkNet-53网络结构为基础,删减了部分残差结构,降低了卷积层的通道数,添加了1条下采样支路和3个尺度跳连结构,增加了一个检测尺度,并通过K-均值聚类与手动调节相结合的方法计算出12组锚框值。最后通过迁移学习机制对YOLOv3-fass算法进行微调。在自研的车辆数据集上,YOLOv3-fass算法与YOLOv3、YOLOv3-tiny、YOLOv3-spp算法以及具有ResNet50和DenseNet201经典网络结构的算法做了对比实验,结果表明YOLOv3-fass算法能够更精准、高效、稳定地检测到车辆信息。 相似文献
14.
针对传统的目标检测算法往往是顺着时间轴方向从过去到现在分析视频序列,而忽略当前帧之后的逆向视频帧信息,对于复杂场景下的背景突变或光照变化的运动目标检测等方面存在不足.提出了基于双向分析的(KGMM)运动目标检测方法.在KGMM模型基础上,加入向后分析建立混合高斯模型,有效解决了较强的背景扰动和环境的复杂变化带来检测效果不好的问题,提高了算法的适应性.向前分析模型与向后分析模型共享一个高斯分布集,减少了高斯分布个数,保证了算法的运行速度.实验结果表明,改进的算法检测效果更理想. 相似文献