首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M C Willing  A W Nienhuis  W F Anderson 《Nature》1979,277(5697):534-538
The human alpha- and beta-globin genes have been activated in MEL X human fibroblast cell hybrids. However, even though the human gamma- and beta-globin genes are closely linked and were shown in these hybrid clones to be present in approximately equal numbers, no human gamma-globin mRNA was produced. Thus, the human beta- and gamma-globin genes in these cells are differentially regulated apparently by a positive regulatory factor(s) specific for individual globin genes.  相似文献   

2.
Structure of the human fetal globin gene locus.   总被引:8,自引:0,他引:8  
We have derived a 'map' of restriction enzyme sites in and around the human gamma-globin genes. This has enabled us to show that there are two gamma-globin genes per haploid set, that the genes contain 'introns' within the same regions of DNA as the human beta and delta-globin genes, and that the genes are 3,500 base pairs apart. We conclude that the correct gene organisation of the human beta-like globin locus is GgammaAgammadeltabeta.  相似文献   

3.
To understand the genetic basis that underlies the phenotypic divergence between human and non- human primates, we screened a total of 7176 protein-coding genes expressed in the human brain and compared them with the chimpanzee orthologs to identify genes that show evidence of rapid evolution in the human lineage. Our results showed that the nonsynonymous/synonymous substitution (Ka/Ks) ratio for genes expressed in the brain of human and chimpanzee is 0.3854, suggesting that the brain-expressed genes are under functional constraint. The X-linked human brain-expressed genes evolved more rapidly than autosomal ones. We further dissected the molecular evolutionary patterns of 34 candidate genes by sequencing representative primate species to identify lineage-specific adaptive evolution. Fifteen out of the 34 candidate genes showed evidence of positive Darwinian selection in human and/or chimpanzee lineages. These genes are predicted to play diverse functional roles in em- bryonic development, spermatogenesis and male fertility, signal transduction, sensory nociception, and neural function. This study together with others demonstrated the usefulness and power of phy- logenetic comparison of multiple closely related species in detecting lineage-specific adaptive evolu- tion, and the identification of the positively selected brain-expressed genes may add new knowledge to the understanding of molecular mechanism of human origin.  相似文献   

4.
The products of the classical human major histocompatibility complex (MHC) class I genes (HLA-A, -B, -C) are highly polymorphic molecules that bind peptides and present them to T lymphocytes. The non-polymorphic, non-classical MHC class I gene products (HLA-E, -F, -G) are not restricting elements for the majority of T lymphocytes. The evolutionary relationship of the non-classical and classical MHC class I genes is unclear. Here we present the cloning and sequencing of the MHC class I genes of a New World primate, the cotton-top tamarin (Saguinus oedipus). The expressed MHC class I genes of this species are more closely related to the human non-classical HLA-G gene than they are to genes of the human classical HLA-A, -B, and -C loci. These observations imply that classical and non-classical genes do not necessarily constitute mutually exclusive groups over evolutionary time.  相似文献   

5.
6.
Synonymous codon bias has been examined in 78 human genes (19967 codons) and measured by relative synonymous codon usage (RSCU). Relative frequencies of all kinds of dinucleotides in 2,3 or 3,4 codon positions have been calculated, and codon-anticodon binding strength has been estimated by the stacking energies of codon-anticodon bases in Watson-Crick pairs. The data show common features in synonymous codon bias for all codon families in human genes: all C-ending codons, which possess the strongest codon-anticodon binding energies, are the most favored codons in almost all codon families, and those codons with medium codon-anticodon binding energies are avoided. Data analysis suggests that besides isochore and genome signature , codon-anticodon binding strength may be closely related to synonymous codon choice in human genes. The join-effect of these factors on human genes results in the common features in codon bias.  相似文献   

7.
M P Lefranc  A Forster  T H Rabbitts 《Nature》1986,319(6052):420-422
Selective cloning procedures for T-cell-specific complementary DNAs have revealed the existence of a gene designated gamma as well as the main antigen receptor alpha- and beta-chain genes. The gamma-chain genes undergo rearrangement during T-cell differentiation but the patterns and complexity of such rearrangements differ markedly in mouse and human. In mouse, a panel of cytotoxic T-lymphocyte clones exhibit the same rearrangement pattern with a gamma-chain gene probe and a set of three gamma-chain variable (V) genes have been identified in the DNA. Clonal diversity in mouse seems to be confined to V-J (joining) regions. In contrast, human T-cell lines exhibit diverse rearrangements suggestive of a family of differing V gamma genes variously rearranging to the two gamma-chain constant (C) region genes. Here we report the cloning of two very different V gamma genes rearranged to J segments upstream of the two human C gamma genes. Both V gamma genes are rearranged productively but nucleotide sequence comparison shows that they possess very little homology with each other. This shows that human T-cell V gamma genes exist which differ significantly from each other at the nucleotide level and that such diverse genes can be usefully rearranged in different T cells.  相似文献   

8.
The reference sequence for each human chromosome provides the framework for understanding genome function, variation and evolution. Here we report the finished sequence and biological annotation of human chromosome 1. Chromosome 1 is gene-dense, with 3,141 genes and 991 pseudogenes, and many coding sequences overlap. Rearrangements and mutations of chromosome 1 are prevalent in cancer and many other diseases. Patterns of sequence variation reveal signals of recent selection in specific genes that may contribute to human fitness, and also in regions where no function is evident. Fine-scale recombination occurs in hotspots of varying intensity along the sequence, and is enriched near genes. These and other studies of human biology and disease encoded within chromosome 1 are made possible with the highly accurate annotated sequence, as part of the completed set of chromosome sequences that comprise the reference human genome.  相似文献   

9.
The human T-cell receptor alpha-chain gene maps to chromosome 14   总被引:7,自引:0,他引:7  
The T-cell receptor for antigen has been identified as a disulphide-linked heterodimeric glycoprotein of relative molecular mass (Mr) 90,000 comprising an alpha- and a beta-chain. The availability of complementary DNA clones encoding mouse and human beta-chains has allowed a detailed characterization of the genomic organization of the beta-chain gene family and has revealed that functional beta-chain genes in T cells are generated from recombination events involving variable (V), diversity (D), joining (J) and constant (C) gene segments. Recently, cDNA clones encoding mouse and human alpha-chains have been described; the sequences of these clones have indicated that functional alpha-chain genes are also generated from multiple gene segments. It is possible that chromosomal translocations involving T-cell receptor alpha- and beta-chain genes have a role in T-cell neoplasms in much the same way as translocations involving immunoglobulin genes are associated with oncogenic transformation in B cells. In the latter case, the chromosomal localization of the immunoglobulin genes provided one of the first indications of the involvement of such translocations in oncogenic transformation. The chromosomal assignment of the alpha- and beta-chain genes may, therefore, provide equally important clues for T-cell neoplastic transformation. The chromosomal location of the mouse and human beta-chain gene family has been determined: the murine gene lies on chromosome 6 (refs 12, 13) whereas the human gene is located on chromosome 7 (refs 13, 14). Here we use a cDNA clone encoding the human alph-chain to map the corresponding gene to chromosome 14.  相似文献   

10.
The human Y chromosome, transmitted clonally through males, contains far fewer genes than the sexually recombining autosome from which it evolved. The enormity of this evolutionary decline has led to predictions that the Y chromosome will be completely bereft of functional genes within ten million years. Although recent evidence of gene conversion within massive Y-linked palindromes runs counter to this hypothesis, most unique Y-linked genes are not situated in palindromes and have no gene conversion partners. The 'impending demise' hypothesis thus rests on understanding the degree of conservation of these genes. Here we find, by systematically comparing the DNA sequences of unique, Y-linked genes in chimpanzee and human, which diverged about six million years ago, evidence that in the human lineage, all such genes were conserved through purifying selection. In the chimpanzee lineage, by contrast, several genes have sustained inactivating mutations. Gene decay in the chimpanzee lineage might be a consequence of positive selection focused elsewhere on the Y chromosome and driven by sperm competition.  相似文献   

11.
12.
13.
To identify the genes associated with cellular rejection in pig-to-human xenotransplantation, the suppression subtractive hybridization (SSH) was used in screening the up-regulated genes from a co-culture of human peripheral blood mononuclear cells (PBMCs) and porcine vascular endothelial cell line PIEC. The up-regulated cDNAs were cloned into pGEM-T Easy vector and then sequenced. Nucleic acid homology searches were performed using the BLAST program. A subtracted cDNA library including about 300 clones with the expected up-regulated genes was obtained. Twenty-four of these clones were analyzed by sequencing and homology comparison was made. These clones represent the genes of human perforin (PRF1), proteasome, lymphocyte specific interferon regulatory factor/interferon regulatory factor 4 (LSIRF/IRF 4), muscleblind-like (MBNL) protein and a porcine expressed sequence tag (EST) which has 81% homology with human oxidative-stress responsive 1 (OSR 1). These genes might be the candidate genes which are associated with cellular rejection in pig-to-human xenotransplantation.  相似文献   

14.
Chromosome 14 is one of five acrocentric chromosomes in the human genome. These chromosomes are characterized by a heterochromatic short arm that contains essentially ribosomal RNA genes, and a euchromatic long arm in which most, if not all, of the protein-coding genes are located. The finished sequence of human chromosome 14 comprises 87,410,661 base pairs, representing 100% of its euchromatic portion, in a single continuous segment covering the entire long arm with no gaps. Two loci of crucial importance for the immune system, as well as more than 60 disease genes, have been localized so far on chromosome 14. We identified 1,050 genes and gene fragments, and 393 pseudogenes. On the basis of comparisons with other vertebrate genomes, we estimate that more than 96% of the chromosome 14 genes have been annotated. From an analysis of the CpG island occurrences, we estimate that 70% of these annotated genes are complete at their 5' end.  相似文献   

15.
V Lindgren  M Ares  A M Weiner  U Francke 《Nature》1985,314(6006):115-116
U2 RNA is one of the abundant, highly conserved species of small nuclear RNA (snRNA) molecules implicated in RNA processing. As is typical of mammalian snRNAs, human U1 and U2 are each encoded by a multigene family. In the human genome, defective copies of the genes (pseudogenes) far outnumber the authentic genes. The majority or all of the 35 to 100 bona fide U1 genes have at least 20 kilobases (kb) of nearly perfect 5' and 3' flanking homology in common with each other; these U1 genes are clustered loosely in chromosome band 1p36 (refs 5, 7) with intergenic distances exceeding 44 kb. In contrast, the 10 to 20 U2 genes are clustered tightly in a virtually perfect tandem array which has a strict 6-kb repeating unit. We report here the assignment, by in situ hybridization, of the U2 gene cluster to chromosome 17, bands q21-q22. Surprisingly, this region is one of three major adenovirus 12 modification sites which undergo chromosome decondensation ('uncoiling') in permissive human cells infected by highly oncogenic strains of adenovirus. The two other major modification sites, 1p36 and 1q21, coincide with the locations of U1 genes and class I U1 pseudogenes, respectively. We suggest that snRNA genes are the major targets of viral chromosome modification.  相似文献   

16.
A J Jeffreys  I W Craig  U Francke 《Nature》1979,281(5732):606-608
Human-mouse somatic cell hybrids have proved invaluable in assigning human genes to their respective human chromosomes. To date, the success of this approach has depended on identifying human proteins which are synthesised in hybrid cells containing a small number of human chromosomes. Consequently, chromosome assignment has been limited mainly to human proteins which are expressed in man-mouse somatic cell hybrids and for which a suitable assay, usually electrophoretic or immunological, exists to distinguish between the human and murine homologous proteins. This technique is therefore unsuitable for the assignment of those human genes which are expressed only in differential cells and not in hybrid cells. Here, we describe how nucleic acid hybridisation and restriction endonuclease mapping of DNA can be combined to test for the presence of human structural gene sequences within hybrid cell DNA. This method can be used to assign any purified human DNA sequence to a human chromosome, and does not require the DNA sequence to be expressed in man-mouse hybrid cells.  相似文献   

17.
18.
19.
Sequence identification of 2,375 human brain genes.   总被引:81,自引:0,他引:81  
We recently described a new approach for the rapid characterization of expressed genes by partial DNA sequencing to generate 'expressed sequence tags'. From a set of 600 human brain complementary DNA clones, 348 were informative nuclear-encoded messenger RNAs. We have now partially sequenced 2,672 new, independent cDNA clones isolated from four human brain cDNA libraries to generate 2,375 expressed sequence tags to nuclear-encoded genes. These sequences, together with 348 brain expressed sequence tags from our previous study, comprise more than 2,500 new human genes and 870,769 base pairs of DNA sequence. These data represent an approximate doubling of the number of human genes identified by DNA sequencing and may represent as many as 5% of the genes in the human genome.  相似文献   

20.
Three gene families that rearrange during the somatic development of T cells have been identified in the murine genome. Two of these gene families (alpha and beta) encode subunits of the antigen-specific T-cell receptor and are also present in the human genome. The third gene family, designated here as the gamma-chain gene family, is rearranged in murine cytolytic T cells but not in most helper T cells. Here we present evidence that the human genome also contains gamma-chain genes that undergo somatic rearrangement in leukaemia-derived T cells. Murine gamma-chain genes appear to be encoded in gene segments that are analogous to the immunoglobulin gene variable, constant and joining segments. There are two closely related constant-region gene segments in the human genome. One of the constant-region genes is deleted in all three T-cell leukaemias that we have studied. The two constant-region gamma-chain genes reside on the short arm of chromosome 7 (7p15); this region is involved in chromosomal rearrangements identified in T cells from individuals with the immunodeficiency syndrome ataxia telangiectasia and observed only rarely in routine cytogenetic analyses of normal individuals. This region is also a secondary site of beta-chain gene hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号