首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
目的探讨复合减水剂和保水剂的相互作用对超早强灌浆料(UESGM)流动度、强度等性能的影响规律,提高其力学性能.方法采用水泥压力试验机测试力学强度,结合抗裂试验和微观形貌图,分析减水剂和保水剂对UESGM影响.结果聚羧酸减水剂、三聚氰胺和纤维素按合理比例复合,在掺量为0.5%~0.7%时,超早强灌浆料的初始流动度大于325 mm,1 d抗折强度达13.15 MPa,1 d抗压大于35 MPa,28 d抗压强度大于90 MPa.结论复合减水剂和保水剂的相互作用促使超早强灌浆料具有良好的工作性能,初始流动度优良、早期强度较高、中后期强度稳定不倒缩.  相似文献   

2.
矿渣—粉煤灰基高性能混凝土专用胶凝材料   总被引:1,自引:1,他引:1  
通过优化配比组分、粒级设计和使用外加剂,制备出一种高掺量矿渣、粉煤灰且使用水泥熟料较少的矿渣--粉煤灰基高性能混凝土专用胶凝材料.研究了物料粉磨方式、石膏掺量、矿渣与粉煤灰的掺量及比例对复合高性能胶凝材料体系强度的影响,并通过X射线衍射(XRD)和扫描电镜(SEM)微观分析手段观察其微观结构和水化产物,阐明了复合胶凝材料活性与级配协同优化效应.复合胶凝材料胶砂水胶比为0.36时具有较好的流动度,胶砂试块养护28d抗压强度可以达到58.9MPa,抗折强度达到14.2MPa,并具有良好的抗硫酸盐侵蚀性能,配制的混凝土具有良好的抗碳化性能.  相似文献   

3.
偏高岭土对高性能水泥砂浆性能的影响   总被引:1,自引:0,他引:1  
研究了偏高岭土的火山灰活性,考察了不同偏高岭土掺量对高性能水泥砂浆的流动度、抗折强度、抗压强度和氯离子渗透性的影响.试验结果表明:偏高岭土的火山灰活性高于硅灰;偏高岭土颗粒形貌的不规则性会降低新拌砂浆的流动度;偏高岭土的掺入使砂浆的抗折强度降低,90d养护龄期时偏高岭土掺量为10%的砂浆抗折强度高于偏高岭土掺量为6%,14%的砂浆抗折强度.偏高岭土掺量为10%的砂浆的后期抗压强度最高,90 d养护龄期时可达96.3 MPa;56 d龄期时偏高岭土掺量为0%,6%,10%,14%的砂浆的氯离子渗透性都较低,电通量分别为165,221,191,158 C.  相似文献   

4.
硫铝酸盐水泥基修补砂浆的力学性能   总被引:1,自引:0,他引:1  
采用可再分散乳胶粉改性硫铝酸盐水泥制备修补砂浆,分别测试其抗折强度、抗压强度、折压比和黏结强度,并结合电子扫描显微镜(SEM)分析水泥砂浆微观结构以及可再分散乳胶粉对硫铝酸盐水泥砂浆的影响机理,研究不同掺量的可再分散乳胶粉对硫铝酸盐水泥砂浆力学性能的影响。试验结果表明:当可再分散乳胶粉质量分数掺量为3%时,水泥砂浆28 d抗折、抗压强度可分别达到8.1 MPa和45.5 MPa,14 d黏结强度可达4.78 MPa;掺入可再分散乳胶粉后,砂浆力学性能改性效果明显。随着可再分散乳胶粉掺量的增加,砂浆的抗折强度大幅度提高,抗压强度降低,折压比增大,黏结强度增大。  相似文献   

5.
为解决地铁区间盾构施工中掘出的盾构渣土难以安置、污染环境、难以回收利用等问题,探讨通过利用盾构区间掘进渣土替代部分中砂制备新型同步注浆材料,实现盾构区间渣土固废资源化利用。以郑州市地铁4号线区段的盾构掘出渣土为研究对象,根据X射线衍射技术(XRD)分析的渣土化学成分组成,选择盾构渣土掺量和水胶比作为影响因素设计调整配比试验,根据不同条件下的试验现象和结果,对比分析地铁盾构渣土掺量及水胶比对材料工作性能以及力学性能的影响;参考规程以稠度、流动度、经时稠度损失、经时流动度损失、分层度、泌水率、结石率等指标评判材料的工作性能,并以3 d抗压强度、28 d空气环境成型抗压强度、28 d水下环境成型抗压强度、水陆抗压比等指标评判材料的工作性能,探讨盾构渣土制备同步注浆材料的可行性。研究结果表明:随着粉质黏土为主的盾构渣土掺量增加,材料的稠度、流动度等工作性能逐渐下降,但盾构渣土在60%替代掺量(质量分数)时能够优化材料级配、加强材料的抗压强度,在无外加剂强化条件下,3 d抗压强度可达到1.17 MPa,28 d空气环境成型抗压强度可达到2.66 MPa;且比表面积较大的盾构渣土改善了传统注浆材料结石率较低以及泌水的问题,结石率可达到96%以上,泌水率为1%左右,但需水量的增加使得该新型同步注浆材料的水胶比较传统注浆材料大,推荐合理的水胶比在1.2~1.3;在无水下抗分散剂强化的情况下,水陆抗压比指标略低于性能要求,其余性能指标均能够达到同步注浆材料性能的规程要求。通过该方法将盾构掘进渣土进行固废资源化利用,具有经济效益、社会效益,材料的性能可调节范围大,具备可行性。  相似文献   

6.
目的研究温度对聚丙烯纤维砂浆及测强曲线的影响,为以后工程防火加固选用砂胶比提供依据,从而达到降低成本的目的.方法通过测试不同胶砂质量比的聚丙烯纤维砂浆的初始流动度、终凝时间、抗压强度和抗折强度,研究不同温度下不同碳纤维掺量的聚丙烯纤维砂浆的耐高温性能.结果当碳纤维体积分数为0.3%、胶砂质量比为1.5时,聚丙烯纤维砂浆流动度大于320 mm,终凝时间60 min左右,28 d抗压强度大于80 MPa,1 000℃高温燃烧后,残余50%以上强度,各龄期的测强曲线与实测强度有较好的拟合关系.结论采用普通硅酸盐水泥、铝酸盐水泥、石膏三元体系,通过添加碳纤维、偏高岭土掺合料及多种化学添加剂,可满足工程实际需要,并且具有良好的经济性.  相似文献   

7.
超细矿渣在硫铝酸盐水泥砂浆中的应用   总被引:1,自引:0,他引:1  
在硫铝酸盐水泥砂浆中加入超细矿渣,研究不同掺量的超细矿渣对水泥浆体凝结时间及胶砂流动度、强度的影响.采用电子扫描显微镜(SEM)分析水泥砂浆微观结构以及超细矿渣在砂浆中的影响机理.实验结果表明:随着掺量的提高,水泥浆体的初凝时间延长,终凝时间缩短;胶砂流动度随超细矿渣掺量的增大而减小; 随超细矿渣掺量的增大,水泥胶砂的3d和28d强度提高,当掺量质量分数为20%时,水泥砂浆28d的抗折、抗压强度达到最大,分别达到7.3Mpa和46.93Mpa.  相似文献   

8.
基于均匀设计的氯氧镁水泥制品试验研究   总被引:1,自引:0,他引:1  
采用混料均匀试验设计的方法,对影响氰氧镁水泥制品性能的因素进行了研究。这些因素包括:MgO:MgCl2:H2O(摩尔比)、活性添加剂、轻质填料、抗水性复合外加剂、减水剂等。试验结果表明:用高掺量粉煤灰(占30%)做活性添加剂制备的氯氧镁水泥制品,常温气干状态下养护28d后再浸泡28d,制品的抗压强度可达到18.625MPa、抗折强度达到7.69MPa.且二者的软化系数都大于0.9并无返卤泛霜现象,并建立了强度指标的回归方程。  相似文献   

9.
目的研究铝酸盐水泥、普通硅酸盐水泥、石膏和硅灰四元复合体系超早强灌浆料的流动度、凝结时间和力学性能,找出超早强灌浆料的最佳配比.方法采用行星式搅拌机将原材料搅拌均匀,利用跳桌测试流动度,贯入阻力法测定凝结时间,水泥压力试验机测试力学强度,混凝土收缩膨胀仪测试膨胀性能,分析砂胶比为1.0的微观结构.结果该体系辅以多种外加剂,采用高胶砂比可以保证初始流动度大于325 mm,30 min流动度大于280 mm,2 h抗压强度达34.80 MPa,24 h抗折达13.82 MPa,28 d抗压强度大于99.90 MPa,56 d抗压强度大于28 d抗压强度.早期SEM微观结构显示晶形生长良好,结构致密.结论铝酸盐水泥、普通硅酸盐水泥、石膏和硅灰按一定的比例复配,具有良好的施工和易性和力学性能.  相似文献   

10.
应用均匀设计方法研究了高强高掺粉煤灰试块的配比关系.基于遗传算法与改进的BP神经网络建立了适用于抗压强度试块原料配比之间的数学模型.通过加入罚函数项并二次采用遗传算法对数学模型寻优求解得到最优配比,此配比下模型预测7 d和28 d强度分别达到35.61MPa和34.25 MPa,与实验结果35.89 MPa和34.10 MPa非常相近.  相似文献   

11.
利用聚合物胶粉改性硫铝酸盐水泥的净浆和砂浆,通过测试拉伸黏结强度、抗折黏结强度和抗压强度,研究不同掺量聚合物胶粉对水泥基材料界面结合能力的影响。试验结果表明:在净浆中,当胶粉掺量为m(胶粉)∶m(水泥)=0.03时,28 d的拉伸黏结强度最大为3.26MPa;在砂浆中,当胶粉的掺量为m(胶粉)∶m(水泥)=0.009,水灰质量比在0.42时,14 d抗折黏结强度最大为7.0 MPa。  相似文献   

12.
通过对DSP高性能岩锚灌浆材料进行配合比及养护环境对其性能影响的试验.研究了水胶比和纳米硅掺量对DSP材料抗压强度及流动度的影响,同时探讨了地下自然环境养护,标准养护和(80±2) ℃热水养护等不同养护环境对其力学性能的影响.获得了一组具有良好施工性能、在(80±2) ℃热水养护条件下48 h抗压强度127 MPa,标准养护7 d, 28 d抗压强度分别为99 MPa和120 MPa,地下自然环境养护7 d, 28 d抗压强度分别为81 MPa和109 MPa的高性能岩锚灌浆材料配比.  相似文献   

13.
将固废基墙体材料应用于装配式结构体系符合当前“双碳”和建筑工业化等重大需求.本文以脱硫石膏-水泥-粉煤灰-生石灰四元胶凝材料体系为对象,研究了水胶比、减水剂种类与掺量、缓凝剂掺量以及研磨时间等因素对其性能的影响.结果表明:水胶比为0.25时,吸水率达到17.1%;聚羧酸减水剂较三聚氰胺减水剂与复合材料相容性更好,其掺量在0.28%时,胶浆流动度达到230 mm;缓凝剂掺量在0.15%时,初凝时间满足实际施工需求;控制研磨时间为20 min,其1 d和28 d的抗压强度分别为33.5 MPa和61.5 MPa,较未研磨体系分别提高了24.07%和32.54%.综上,脱硫石膏基胶凝材料体系实现了高流态、早强和高强,为应用于绿色装配式构件提供参考.  相似文献   

14.
研究了碱激发剂(Na_2SO_4、Na_2SO_4+NaOH、Na_2SO_4+Na_2SiO_3)对碱矿渣砂浆抗压强度的影响.研究表明,与单独采用Na_2SO_4作为激发剂时的碱矿渣砂浆抗压强度相比,采用Na_2SO_4和NaOH作为复合激发剂,碱矿渣砂浆抗压强度略低;采用Na_2SO_4和Na_SiO_3作为复合激发剂,碱矿渣砂浆抗压强度有明显的提高,但Na_2SiO_3掺量不宜超过2.5%.通过试验结果对比得出碱矿渣水泥最佳配方:普通硅酸盐水泥∶Na_2SO_4∶矿渣∶Na_2SiO_3=10%∶5%∶85%∶2.5%,所配制砂浆(最佳碱矿渣水泥∶砂∶水=492∶522∶168)的28d抗压强度达到53.7MPa.  相似文献   

15.
目的研究复掺减水剂、矿渣和防水剂对粉煤灰加气混凝土吸水性能和抗压强度的影响,解决其吸水率高,抗压强度偏低的问题.方法通过复掺减水剂、矿渣和防水剂的手段,制备B05粉煤灰加气混凝土试件,测试加气混凝土试块的抗压强度和质量吸水率.结果减水剂掺量为0.60%时质量吸水率下降到63%,抗压强度3.26 MPa;复掺减水剂0.60%和矿渣掺量10%时抗压强度提高到4.03 MPa;3种防水剂中有机硅烷类的防水效果最好,质量吸水率下降到57%,3种防水剂的掺入均会导致抗压强度下降.结论复掺减水剂和矿渣粉选择合适的掺量,有助于提高抗压强度,降低吸水率;复掺减水剂、矿渣和防水剂,有机硅烷类的防水效果比较显著,高级脂肪酸类砂浆防水剂和硬脂酸钙乳液的防水效果一般.  相似文献   

16.
通过使用不同机制砂取代率的人工砂、采用掺入石粉部分替代水泥的方法,研究人工砂砂浆流动度及力学性能的变化规律.研究表明:随着机制砂取代率的增大,人工砂砂浆的流动度优于天然砂砂浆,且其7、28 d抗压和抗折强度随着机制砂取代率的增大而增大.掺入5%的石粉可以提高人工砂砂浆的流动度及7 d抗压和抗折强度,28 d抗压和抗折强度降低幅度在10%之内.综合考虑人工砂砂浆的流动度及力学性能,建议采用机制砂取代率为66.7%及石粉掺量为5%的人工砂.  相似文献   

17.
文章以聚羧酸减水剂掺量为变化参数,研究了早强型套筒灌浆料的流动度、竖向膨胀率以及抗压强度随减水剂掺量的变化情况,研究结果表明:随着减水剂掺量的增加,灌浆料的流动度先增大后呈减小的趋势;灌浆料的3h竖向膨胀率随减水剂掺量的增加逐渐降低,而24 h竖向膨胀率基本保持不变;减水剂掺量对硬化浆体的抗压强度影响不显著.  相似文献   

18.
粉煤灰砂浆早期抗压强度试验研究   总被引:2,自引:0,他引:2  
根据不同配合比研制的粉煤灰掺量13.6%的3组,粉煤灰掺量11.5%的3组,共6组M5粉煤灰砂浆.经过3天自然养护,对其进行了抗压强度试验,研究粉煤灰砂浆早期抗压强度的影响因素.试验研究表明:引气剂(微沫剂)掺入会降低粉煤灰砂浆的早期强度.减水剂的掺入可以提高粉煤灰砂浆的早期强度.减水剂掺量一定时,水胶比越小,粉煤灰水泥的早期抗压强度越高.从6组试件中选出28天抗压强度可达M5以上的粉煤灰砂浆,其配合比为:水泥:粉煤灰:轻砂:水:微沫剂:减水剂=1:0.7:4.4:2.0:0.00326:0.096.  相似文献   

19.
木质素磺酸盐外加剂对水泥砂浆性能的影响   总被引:1,自引:0,他引:1  
针对水泥砂浆抗压强度低及抗渗性能差的问题,采用造纸废液主要成分--木质素磺酸钙为主要原料制备木质素系砂浆外加剂GCL1-M.水泥砂浆物理力学性能和微观结构测试结果表明,添加GCL1-M的砂浆减水率达到了30%,与未掺外加剂的砂浆相比,掺0.30%GCL1-M的硬化砂浆的28天抗压强度提高了20%,渗透压力提高了230%.氮吸附测试和电子扫描显微观测等结果表明,GCL1-M可减慢水泥的水化反应放热速度,降低砂浆的孔径,提高砂浆的抗渗性能.吸附性能及环境扫描电镜等测试结果表明,GCL1-M在水泥颗粒表面可形成网状结构吸附,同时可增加颗粒间的静电斥力位能,从而增强了对水泥砂浆的分散和保水作用,有利于提高砂浆的抗渗性能和抗压强度.  相似文献   

20.
以粉煤灰、硅灰、石膏作为外加剂,与杭州典型工程粉质黏土和水泥混合制作改性水泥土,通过室内无侧限抗压强度试验研究了外加剂种类和掺量及养护龄期对改性水泥土强度的影响,并通过扫描电镜试验从微观角度阐释其强度变化规律的成因.研究结果表明:粉煤灰、硅灰、石膏三种外加剂对水泥土强度特性的改善效果从高到低依次为硅灰、石膏、粉煤灰;不同外加剂改性水泥土强度主要增长期均在14 d左右;以掺量为10%的硅灰和掺量为21%的水泥制作的硅灰改性水泥土在28 d养护龄期的强度最优,为8.11 MPa;未掺入外加剂的水泥土在微观上呈针尖状聚合结构,外加剂可通过填充针尖状聚合结构缝隙使水泥土形成稳定且更为致密的空间网状结构来提升水泥土的强度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号