首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
讨论了非连通图G23∪G的优美性,给出了非连通图G23∪G是优美图的两个充分条件.证明了如果图G是特征为k且缺k+2或k+11标号值的交错图,则非连通图G23∪G存在缺k+1标号值的优美标号.  相似文献   

2.
讨论了非连通图G23∪G的优美性,给出了非连通图G23∪G是优美图的两个充分条件。证明了如果图G是特征为k且缺k+2或k+11标号值的交错图,则非连通图G23∪G存在缺k+1标号值的优美标号。  相似文献   

3.
非连通图C4m∪G 的优美标号   总被引:1,自引:0,他引:1  
讨论了非连通图C4 m∪G的优美性,给出了非连通图C4 m∪G是优美图的4个充分条件:当图G是缺标号值k+3 m且特征为k的交错图时,非连通图C4 m∪G存在着缺标号值k+1的优美标号;当图G是缺标号值k+m+1且特征为k的交错图时,非连通图C4 m∪G存在特征为2 m+k+1缺标号值k+1的交错标号;当图G是缺标号值k+2 m且特征为k的交错图时,非连通图C4 m∪G存在缺标号值k+3 m的优美标号;当图G是缺标号值k+2 m+1且特征为k的交错图时,非连通图C4 m∪G存在缺标号值k+m的优美标号。  相似文献   

4.
将k-优美图的概念进行了推广,引入A~B优美图的概念,并以此为基础,得到了非连通图(P3∨■)∪G及(C3∨■)∪G是优美图的一个充分条件。证明了对任意正整数k,m,n,t,当k≤n≤t,n+k-1≤m时,图(P3∨■)∪(∪kj=1Kn,t)和(C3∨■)∪(∪kj=1Kn,t)是优美图;当k=1,2,2≤n<2m+1时,图(P3∨■)∪∪kj=1P(j)n,(C3∨■)∪∪kj=1P(j)n和(P3∨■)∪Pn∪St(t)是优美图;当2≤n≤2m+1时,(C3∨■)∪Pn∪St(t)是优美图。本文的结果推广了现有的一些结论。  相似文献   

5.
讨论了非连通图C4m-1∪C12m-8 ∪G的优美性,证明了当m为任意正整数,G是特征为k且缺k+6m-3标号值的交错图(6m-3≤k+6m-3≤| E(G)|)时,非连通图C4m-1∪ C12m-8∪G存在缺标号值k+1的优美标号,其中,G是具有m个顶点的圈.  相似文献   

6.
讨论了非连通图D4uC的优美性,给出了非连通图D4uG是优美图的3个充分条件。  相似文献   

7.
非连通并图的优美标号研究   总被引:2,自引:1,他引:1  
设图G3是长度为3的圈C3或为含3个顶点的路P3,文章给出了非连通图(G3∨Km)∪Kn,t和(G3∨Km)∪Pn,并证明了对任意正整数m,n,t,如果min{n,t}≤m,则图(G3∨Km)∪Kn,t是优美图;如果2≤n≤2m+1,则图(G3∨Km)∪Pn是优美图;同时证明了对任意正整数m,n,图(G3∨Km)∪St(n)和(G3∨Km)∪W2n+5是优美图.其中,Pn是n个顶点的路,G1∨G2是图G1与G2的联图,Km是m个顶点的完全图,m是Km的补图,Kn,t是具有二分类(X,Y)的完全偶图,且|X|=n,|Y|=t,St(n)是具有n+1个顶点的星形树,Wn是具有n+1个顶点的轮图.  相似文献   

8.
讨论了非连通图C4m-1∪C12m-8∪G的优美性,证明了当m为任意正整数,G是特征为k且缺标号值k+6m-4的交错图(6m-4≤k+6m-4≤|E(G)|)时,非连通图C4m-1∪C12m-8∪G存在缺标号值k+16m-9的优美标号,其中,Cm是具有m个顶点的圈.  相似文献   

9.
讨论了非连通图D2,6∪G的优美性,给出了非连通图D2,6∪G是优美图的一个充分条件,证明了若图G是特征为k且缺k+9标号值的交错图(9≤k+9≤|E(G)|),则非连通图D2,6∪G存在缺k+1和k+6标号值的优美标号.  相似文献   

10.
讨论了非连通图D2,8∪G的优美性,给出了非连通图D2,8∪G是优美图的两个充分条件.  相似文献   

11.
讨论了非连通图2D_(3,4)∪G的优美性,给出了非连通图D3,4∪G是优美图的二十一个充分条件.证明了非连通图2D_(3,4)∪G(k)+a(a=2,3,4,5,6,8,9,…,23)都是优美的.  相似文献   

12.
给出了两类非连通图(K2〖TX-〗∨Cn)∪[DD(]3[]i=1[DD)]St(mi)和(K2〖TX-〗∨C2n+k)∪St(m)∪G(k)n-1(k=1,2), 并证明了如下结论:对自然数n, m, m1, m2, m3, 设s=〖JB([〗〖SX(〗n〖〗2〖SX)〗〖JB)]〗, n≥9, m1≥s+2, 则图(K2〖TX-〗∨Cn)∪[DD(]3[]i=1[DD)]St(mi)是一个优美图; 对 k=1,2,设n, m≥3, G(k)n-1是一个具有n-1条边的k-优美图,则图(K2〖TX-〗∨C2n+k)∪St(m)∪G(k)n-1是一个优美图。 其中,K2是一个具有2个顶点的完全图,K2〖TX-〗是图K2的补图,K2〖TX-〗∨Cn是图K2和n圈Cn的联图, St(m)是一个具有m+1个顶点的星形树。  相似文献   

13.
讨论了非连通图2C4m∪G的优美性,给出了非连通图2C4m∪G是优美图的一个充分条件.  相似文献   

14.
非连通图C_(4m-1)∪G的优美标号   总被引:1,自引:0,他引:1  
讨论了非连通图C4 m-1∪G的优美性,给出了非连通图C4 m-1∪G是优美图的2个充分条件.  相似文献   

15.
将k-优美图的概念进行了推广,引入A~B优美图的概念,并以此为基础,得到了非连通图(P3∨(Km))∪G及(C3∨(Km))∪G是优美图的一个充分条件.证明了对任意正整数k,m,n,t,当k≤n≤t,n+k-1≤m时,图(P3∨(Km))∪(k∪j=1Kn,t)和(C3∨(Km))∪(k∪j=1Kn,t)是优美图;当k=1,2,2≤n<2m+1时,图(P3∨(Km))∪k∪j=1P(j)n,(C3∨(Km))∪k∪j=1P(j)n和(P3∨(Km))∪Pn∪St(t)是优美图;当2≤n≤2m +1时,(C3∨(Km))∪Pn∪St(t)是优美图.本文的结果推广了现有的一些结论.  相似文献   

16.
关于图P6k+43∪Pn3的优美性   总被引:3,自引:0,他引:3  
讨论了形如P63k+4∪Pn3非连通并图的优美性,用构造性的方法给出了P36k+4∪Pn3的优美标号,并证明P63k+4∪Pn3是交错图.  相似文献   

17.
讨论非连通图C_(4m)∪G的优美性,再次对非连通图C_(4m)∪G的优美标号,给出了非连通图C_(4m)∪G是优美图的两个充分条件:非连通图C_(4m)∪G存在缺标号值k+4m的优美标号;当图G是特征为k且缺k+m标号值的交错图时,非连通图C_(4m)∪G存在缺标号值k+4m,特征为2m+k的交错标号。  相似文献   

18.
图C4k ∪ Pn的优美性   总被引:1,自引:0,他引:1  
研究了图与路不交并图C4k ∪ Pn≥k 2的优美性,首先利用弱优美性的定义,给出了与所研究问题等价的两个命题,把C4k ∪ Pn n≥k 2优美性的证明转化为若干路弱优美性的证明,使问题简单化,接着用这种方法证明了k=2,3,4,5,6,7时C4k ∪ Pn n≥k 2的优美性。  相似文献   

19.
讨论了非连通图C5⊙K1∪G的优美性,给出了非连通图C5⊙K1∪G是优美图的一个充分条件.  相似文献   

20.
再探非连通图C_(4m-1)∪G的优美标号   总被引:1,自引:0,他引:1  
讨论了非连通图C4 m-1∪G的优美性,给出了非连通图C4 m-1∪G是优美图的2个充分条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号