首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of glucose homeostasis by insulin depends on the maintenance of normal beta-cell mass and function. Insulin-like growth factor 1 (Igf1) has been implicated in islet development and differentiated function, but the factors controlling this process are poorly understood. Pancreatic islets produce Igf1 and Igf2, which bind to specific receptors on beta-cells. Igf1 has been shown to influence beta-cell apoptosis, and both Igf1 and Igf2 increase islet growth; Igf2 does so in a manner additive with fibroblast growth factor 2 (ref. 10). When mice deficient for the Igf1 receptor (Igf1r(+/-)) are bred with mice lacking insulin receptor substrate 2 (Irs2(-/-)), the resulting compound knockout mice show a reduction in mass of beta-cells similar to that observed in pancreas of Igf1r(-/-) mice (ref. 11), suggesting a role for Igf1r in growth of beta-cells. It is possible, however, that the effects in these mice occur secondary to changes in vascular endothelium or in the pancreatic ductal cells, or because of a decrease in the effects of other hormones implicated in islet growth. To directly define the role of Igf1, we have created a mouse with a beta-cell-specific knockout of Igf1r (betaIgf1r(-/-)). These mice show normal growth and development of beta-cells, but have reduced expression of Slc2a2 (also known as Glut2) and Gck (encoding glucokinase) in beta-cells, which results in defective glucose-stimulated insulin secretion and impaired glucose tolerance. Thus, Igf1r is not crucial for islet beta-cell development, but participates in control of differentiated function.  相似文献   

2.
3.
Imprinted genes are expressed from only one of the parental alleles and are marked epigenetically by DNA methylation and histone modifications. The paternally expressed gene insulin-like growth-factor 2 (Igf2) is separated by approximately 100 kb from the maternally expressed noncoding gene H19 on mouse distal chromosome 7. Differentially methylated regions in Igf2 and H19 contain chromatin boundaries, silencers and activators and regulate the reciprocal expression of the two genes in a methylation-sensitive manner by allowing them exclusive access to a shared set of enhancers. Various chromatin models have been proposed that separate Igf2 and H19 into active and silent domains. Here we used a GAL4 knock-in approach as well as the chromosome conformation capture technique to show that the differentially methylated regions in the imprinted genes Igf2 and H19 interact in mice. These interactions are epigenetically regulated and partition maternal and paternal chromatin into distinct loops. This generates a simple epigenetic switch for Igf2 through which it moves between an active and a silent chromatin domain.  相似文献   

4.
5.
CTCF maintains differential methylation at the Igf2/H19 locus   总被引:21,自引:0,他引:21  
  相似文献   

6.
MicroRNAs (miRNAs) are an abundant class of RNAs that are approximately 21-25 nucleotides (nt) long, interact with mRNAs and trigger either translation repression or RNA cleavage (RNA interference, RNAi) depending on the degree of complementarity with their targets. Here we show that the imprinted mouse distal chromosome 12 locus encodes two miRNA genes expressed from the maternally inherited chromosome and antisense to a retrotransposon-like gene (Rtl1) expressed only from the paternal allele.  相似文献   

7.
A new type of mutation causes a splicing defect in ATM   总被引:19,自引:0,他引:19  
Disease-causing splicing mutations described in the literature primarily produce changes in splice sites and, to a lesser extent, variations in exon-regulatory sequences such as the enhancer elements. The gene ATM is mutated in individuals with ataxia-telangiectasia; we have identified the aberrant inclusion of a cryptic exon of 65 bp in one affected individual with a deletion of four nucleotides (GTAA) in intron 20. The deletion is located 12 bp downstream and 53 bp upstream from the 5' and 3' ends of the cryptic exon, respectively. Through analysis of the splicing defect using a hybrid minigene system, we identified a new intron-splicing processing element (ISPE) complementary to U1 snRNA, the RNA component of the U1 small nuclear ribonucleoprotein (snRNP). This element mediates accurate intron processing and interacts specifically with U1 snRNP particles. The 4-nt deletion completely abolished this interaction, causing activation of the cryptic exon. On the basis of this analysis, we describe a new type of U1 snRNP binding site in an intron that is essential for accurate intron removal. Deletion of this sequence is directly involved in the splicing processing defect.  相似文献   

8.
Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos   总被引:7,自引:0,他引:7  
  相似文献   

9.
10.
11.
A locus for X-linked hydrocephalus (HSAS), which is characterized by mental retardation and enlarged brain ventricles, maps to the same subchromosomal region (Xq28) as the gene for neural cell adhesion molecule L1. We have found novel L1 mRNA species in cells from affected members of a HSAS family containing deletions and insertions produced by the utilization of alternative 3' splice sites. A point mutation at a potential branch point signal in an intron segregates with the disease and is likely to be responsible for the abnormal RNA processing. These results suggest that HSAS is a disorder of neuronal cell migration due to disruption of L1 protein function.  相似文献   

12.
13.
14.
Imprinted expression at the H19-Igf2 locus depends on a differentially methylated domain (DMD) that acts both as a maternal-specific, methylation-sensitive insulator and as a paternal-specific site of hypermethylation. Four repeats in the DMD bind CCCTC-binding factor (CTCF) on the maternal allele and have been proposed to attract methylation on the paternal allele. We introduced point mutations into the DMD to deplete the repeats of CpGs while retaining CTCF-binding and enhancer-blocking activity. Maternal inheritance of the mutations left H19 expression and Igf2 imprinting intact, consistent with the idea that the DMD acts as an insulator. Conversely, paternal inheritance of these mutations disrupted maintenance of DMD methylation, resulting in biallelic H19 expression. Furthermore, an insulator was established on the paternally inherited mutated allele in vivo, reducing Igf2 expression and resulting in a 40% reduction in size of newborn offspring. Thus, the nine CpG mutations in the DMD showed that the two parental-specific roles of the H19 DMD, methylation maintenance and insulator assembly, are antagonistic.  相似文献   

15.
Spinocerebellar ataxia type 10 (SCA10; MIM 603516; refs 1,2) is an autosomal dominant disorder characterized by cerebellar ataxia and seizures. The gene SCA10 maps to a 3.8-cM interval on human chromosome 22q13-qter (refs 1,2). Because several other SCA subtypes show trinucleotide repeat expansions, we examined microsatellites in this region. We found an expansion of a pentanucleotide (ATTCT) repeat in intron 9 of SCA10 in all patients in five Mexican SCA10 families. There was an inverse correlation between the expansion size, up to 22.5 kb larger than the normal allele, and the age of onset (r2=0.34, P=0.018). Analysis of 562 chromosomes from unaffected individuals of various ethnic origins (including 242 chromosomes from Mexican persons) showed a range of 10 to 22 ATTCT repeats with no evidence of expansions. Our data indicate that the new SCA10 intronic ATTCT pentanucleotide repeat in SCA10 patients is unstable and represents the largest microsatellite expansion found so far in the human genome.  相似文献   

16.
17.
Genomic imprinting is an epigenetic process in which the activity of a gene is determined by its parent of origin. Mechanisms governing genomic imprinting are just beginning to be understood. However, the tendency of imprinted genes to exist in chromosomal clusters suggests a sharing of regulatory elements. To better understand imprinted gene clustering, we disrupted a cluster of imprinted genes on mouse distal chromosome 7 using the Cre/loxP recombination system. In mice carrying a site-specific translocation separating Cdkn1c and Kcnq1, imprinting of the genes retained on chromosome 7, including Kcnq1, Kcnq1ot1, Ascl2, H19 and Igf2, is unaffected, demonstrating that these genes are not regulated by elements near or telomeric to Cdkn1c. In contrast, expression and imprinting of the translocated Cdkn1c, Slc22a1l and Tssc3 on chromosome 11 are affected, consistent with the hypothesis that elements regulating both expression and imprinting of these genes lie within or proximal to Kcnq1. These data support the proposal that chromosomal abnormalities, including translocations, within KCNQ1 that are associated with the human disease Beckwith-Wiedemann syndrome (BWS) may disrupt CDKN1C expression. These results underscore the importance of gene clustering for the proper regulation of imprinted genes.  相似文献   

18.
Insulin receptor substrates (Irs proteins) mediate the pleiotropic effects of insulin and Igf-1 (insulin-like growth factor-1), including regulation of glucose homeostasis and cell growth and survival. We intercrossed mice heterozygous for two null alleles (Irs1+/- and Irs2+/-) and investigated growth and glucose metabolism in mice with viable genotypes. Our experiments revealed that Irs-1 and Irs-2 are critical for embryonic and post-natal growth, with Irs-1 having the predominant role. By contrast, both Irs-1 and Irs-2 function in peripheral carbohydrate metabolism, but Irs-2 has the major role in beta-cell development and compensation for peripheral insulin resistance. To establish a role for the Igf-1 receptor in beta-cells, we intercrossed mice heterozygous for null alleles of Igf1r and Irs2. Our results reveal that Igf-1 receptors promote beta-cell development and survival through the Irs-2 signalling pathway. Thus, Irs-2 integrates the effects of insulin in peripheral target tissues with Igf-1 in pancreatic beta-cells to maintain glucose homeostasis.  相似文献   

19.
In mammals, imprinted genes have parent-of-origin-specific patterns of DNA methylation that cause allele-specific expression. At Rasgrf1 (encoding RAS protein-specific guanine nucleotide-releasing factor 1), a repeated DNA element is needed to establish methylation and expression of the active paternal allele. At Igf2r (encoding insulin-like growth factor 2 receptor), a sequence called region 2 is needed for methylation of the active maternal allele. Here we show that replacing the Rasgrf1 repeats on the paternal allele with region 2 allows both methylation and expression of the paternal copy of Rasgrf1, indicating that sequences that control methylation can function ectopically. Paternal transmission of the mutated allele also induced methylation and expression in trans of the normally unmethylated and silent wild-type maternal allele. Once activated, the wild-type maternal Rasgrf1 allele maintained its activated state in the next generation independently of the paternal allele. These results recapitulate in mice several features in common with paramutation described in plants.  相似文献   

20.
Tsix, a gene antisense to Xist at the X-inactivation centre   总被引:23,自引:0,他引:23  
In mammals, dosage compensation is achieved by X inactivation and is regulated in cis by the X-inactivation centre (Xic) and Xist. The Xic controls X-chromosome counting, choice of X to inactivate and initiation of silencing. Xic action culminates in a change in Xist RNA property from a scarce, unstable RNA to highly expressed Xist RNA that coats the future inactive X. Deleting a 65-kb region downstream of Xist results in constitutive Xist expression and X inactivation, implying the presence of a cis-regulatory element. In this region, we now report the discovery of a gene antisense to Xist. Tsix is a 40-kb RNA originating 15 kb downstream of Xist and transcribed across the Xist locus. Tsix sequence is conserved at the human XIC. Tsix RNA has no conserved ORFs, is seen exclusively in the nucleus and is localized at Xic. Before the onset of X inactivation, Tsix is expressed from both X chromosomes. At the onset of X inactivation, Tsix expression becomes monoallelic, is associated with the future active X and persists until Xist is turned off. Tsix is not found on the inactive X once cells enter the X-inactivation pathway. Tsix has features suggesting a role in regulating the early steps of X inactivation, but not the silencing step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号