共查询到20条相似文献,搜索用时 15 毫秒
1.
CT成像是检测新冠感染(COVID-19)病灶区域的重要手段之一,但需要专业的放射科医生判断且工作量较大。为了解决磨玻璃结节(GGO)以及肺部实变两种病变统一分割问题,在U-Net网络模型中加入改进的三重注意力模块,提高病灶特征的显著性,细化病灶的边缘特征,增加对小区域病灶的识别度,辅助医生判断。该方法构建的深度分割网络模型在COVID-19分割数据集中进行实验,得到的Sensitivity, Specificity, Dice, mIou分别为86.57%,99.33%,81.64%,88.23%。分割效果在这个模型中能得到更良好的体现。 相似文献
2.
针对泡沫图像的高度复杂性导致其难以被准确分割的难题,本文提出了一种新的I-Attention U-Net网络用于泡沫图像分割.该算法以U-Net网络作为主干网络,使用Inception模块替换第一卷积池化层来提取泡沫图像的多尺度、多层次浅层特征信息;引入金字塔池化模块,通过对不同尺度的特征图求和来提升分割效果;并对自注意力门控单元进行改进,使注意力单元更适合于浮选泡沫图像的分割,强化深层特征的重要性并对不同尺寸的泡沫边界进行强化学习.研究结果表明:本文所提出算法的Jaccard系数为91.73%,Dice系数为95.66%.与同类其他分割算法结果相比,Jaccard系数及Dice系数分别提高了1.59%、0.88%.该模型能够较好地对锌浮选泡沫图像进行分割,解决欠分割与过分割的问题,为后续的泡沫特征提取奠定基础.此外,该方法检测时间和模型参数少,具备可以部署在工业现场计算机的能力,有一定的实际应用价值. 相似文献
3.
针对U-Net网络感受野受限以及信息丢失导致的分割精度低的问题,提出了一种基于感受野扩增和注意力机制的U-Net脑肿瘤MR图像分割算法.首先,在U-Net网络中引入感受野模块(receptive field block,RFB)来增大网络的感受野,解决了网络由于感受野受限带来的分割精度低的问题.此外在网络中引入有效的通道注意模块(efficient channel attention,ECA)来增加网络对有用特征的响应,抑制网络中的冗余特征.使用BraTS(the brain tumor image segmentation challenge)提供的脑肿瘤MR图像数据对本文算法进行测试,用Dice相似性系数等指标进行评价,结果显示在完整肿瘤、核心肿瘤以及增强肿瘤的Dice值分别可达到0.86、0.86、0.79.与U-Net模型以及其他的网络相比得到了提高.实验结果表明,本文提出的算法能够有效提升脑肿瘤分割的精度,具有良好的分割性能. 相似文献
4.
为解决脑脊液病理图像中部分细胞膜较为模糊,与图像背景难以区分的问题,采用了基于注意力机制的U-Net深度学习方法对脑脊液病理图像做全自动分割.在深度学习网络中加入注意力机制对细胞进行定位,抑制无关信息,提高语义的特征表达,提高对细胞整体分割的精确性.通过镜像、旋转等操作对数据集进行扩充预处理.采用VGG16预训练模型进行迁移学习,交叉熵与Dice损失相结合作为损失函数,分别在脑脊液临床图像与公开数据集2018 Data Science Bowl上进行验证;并与Otsu, PSPnet, Segnet, DeeplabV3+, U-Net进行对比,结果表明, 本文方法在各项指标上均优于其他分割方法. 相似文献
5.
息肉图像的分割在临床医疗和计算机辅助诊断技术等领域具有广泛的研究和应用价值,但是就目前的研究和应用需求来看,准确的息肉分割仍然是一项挑战. 针对内窥镜息肉图像中出现的息肉与黏膜边界不清晰、息肉的大小和形状差异较大等影响分割质量的问题,该文提出了一种基于U-Net改进的息肉图像分割算法(SBF-Net). 首先,在U-Net架构上引入了边界特征加强模块(BFEM),考虑到息肉边界和内部区域的关键线索,该模块利用编码器高层特征生成额外的边界补充信息,在解码器阶段进行融合,提升模型处理边界特征的能力. 其次,该模型的解码器(GFBD)采用了从上至下逐步融合特征的方式,将编码器阶段的输出特征经过局部加强(LE)模块之后再逐步融合边界特征,这种多尺度特征融合方式有效缓解了编码器和解码器之间的语义差距问题. 最后,在后处理阶段采用测试时数据增强(TTA)来进一步对分割结果进行细化. 该模型在CVC-300、CVC-ClinicDB、Kvasir-SEG、CVC-ColonDB和ETIS-LaribPolypDB等5个公开数据集上进行了对比实验和消融实验,实验结果证明了该文所改进方法的有效性,并在内窥镜息肉图像上表现出更好的分割性能和更强的稳定性,为息肉图像的处理和分析提供了新的参考. 相似文献
6.
为提高脑肿瘤磁共振图像分割精度,在U-Net图像分割方法基础上,提出了一种引入注意力机制的深度学习改进模型,利用全局上下文信息,使模型重点关注需要分割区域的特征,并抑制无关的特征,以此提高模型的分割精度,同时引入残差块来加速模型的训练.实验结果表明:提出的改进模型相比U-Net方法,脑肿瘤MRI图像的分割精度有了提高,... 相似文献
7.
注意力机制能够挖掘与任务密切相关的重要信息并抑制非重要信息,在语义分割的深层特征表示中发挥着越来越重要的作用。本研究基于广泛应用的U-Net模型,提出了一种基于注意力机制的神经网络模型,针对边缘分割模糊的问题,将U-Net的压缩路径和扩展路径中的双卷积替换为卷积核选择模块,该模块允许网络的每一层根据输入信息进行自适应调整接受野的大小;另外,针对人像分割网络存在不同尺度的全局上下文信息被忽略的问题,采用多尺度预测融合的方法来利用不同尺度的全局信息,并采用双注意力模块汇总空间和通道两方面的注意力信息。大量实验表明,本文中方法的性能与U-Net、UNet++和Attention U-Net等网络相当或更好。 相似文献
8.
针对现有算法因视网膜图像中血管细小和光照等因素导致的分割精度低的问题,在U-Net的基础上进行改进,提出了一种能够较好地提取血管结构的算法模型ASR-UNet.首先,在编码和解码阶段使用了SE-Resnet结构,引入通道注意力机制对血管细微结构进行通道增强,之后在跳跃连接部分使用了AG模块对血管细微结构进行空间增强,提... 相似文献
9.
基于CT血管造影(computed tomography angiography,CTA)图像的冠状动脉自动分割的挑战在于冠状动脉结构复杂、前背景分布严重不平衡,分割时易受冠状静脉和其他组织的干扰.提出了一种两阶段的冠状动脉分割算法,第一阶段采用具有密集特征提取和残差特征修正能力的3D DRU-Net进行分割,保证分割的召回率;在第二阶段提出2D双编码多特征融合U-Net(2D DEMFU-Net)进行细分割,先对原始图像和第一阶段分割结果分别进行特征提取,再采用密集跳跃连接融合两个分支上的多层次语义特征,进一步提高分割准确性.实验结果表明,提出的两阶段分割算法在CortArt2020数据集上的Dice相似系数、召回率和精确度分别优于3D U-Net网络3.83%,5.31%和2.23%. 相似文献
10.
提出一种基于注意力机制的多层次特征融合的图像去雾算法.该算法通过残差密集网络和自校准卷积网络来提取不同尺度的特征,再利用双重注意单元和像素注意力将特征融合重建.同时采用一种由均方误差损失、边缘损失和鲁棒性损失函数相结合的损失函数,可以更好地保留细节特征.实验表明,该算法与其他去雾算法相比在峰值信噪比和结构相似度指标上得到一定的提高,去雾图像在主观视觉上取得了较好表现. 相似文献
11.
准确分割核磁共振(magnetic resonance, MR)图像中的脑组织是临床诊断、手术计划和辅助治疗的关键步骤.深度学习在各种图像分割任务中表现出巨大潜力,现有模型没有一种有效方法汇总远距离像素间的关系.在网络解码阶段不能很好地融合不同层级的特征,导致无法准确定位.为克服上述问题,本文提出一种基于空间自注意力机制和深度特征重建的脑MR图像分割方法,构建了一个可以融合3维信息的2D模型,可快速准确对3D结构图像进行密集预测.在MRBrainS13数据集和IBSR数据集上进行充分地实验研究,结果表明本文方法在3D多模态和单模态脑MR图像分割方面优于目前的2D模型,运算和推理时间相比3D模型小很多,性能却十分接近. 相似文献
12.
13.
主流网络在提取图片特征过程中易受其他目标干扰导致特征鲁棒性降低,而现有的基于噪声抗干扰机制有着伪特征与真实特征相似度不高这一劣势;注意力机制的运用可以提升道路场景特征的空间上下文关系从而增强特征的抗干扰能力,但现有的注意力机制缺乏像素级的特征筛选。针对上述问题提出了基于图像特征自干扰与像素注意力机制的道路分割网络,该网络分为主干分割网络和特征自干扰网络两部分,主干的分割网络包含像素注意力模块,可实现真实特征的提取和像素级的增强;自干扰网络输入原始图像随机裁剪和插值放大后得到的局部图生成伪特征,此外提出了融合模块用于实现伪特征与真实特征的融合并对主分割网络中间特征进行干扰。在KITTI和Cityscapes道路数据库上的实验表明:基于图像特征自干扰与像素注意力机制的分割方法与DeepLab V3分割方法相比,在KITTI数据集上的分割精度由88.02%提升至90.55%,在Cityscapes数据集上的分割精度由87.15%提升至90.16%。 相似文献
14.
计算机断层扫描(CT)产生的辐射风险已成为公众关注的问题.降低剂量将影响CT图像的质量以及医生的诊断结果.传统的基于深度网络算法中,同一层中的特征通道间的地位是平等的,影响信息的提取.为此,提出了一种具有注意力机制的U-Net残差网络.在U-Net中引入通道注意力模块驱使网络将更多的注意力集中于含有噪声和伪影信息的通道... 相似文献
15.
针对普通卷积运算无法关注重点区域、编码器无法有效提取全局上下文信息、简单的跳跃连接无法捕获显著特征,以及易导致分割图像分辨率降低、重要细节丢失、小物体信息无法被准确捕获等问题,提出基于膨胀率注意力机制的UNet(DRA-UNet)模型,并发展了基于此模型的超声图像分割方法.在UNet模型的基础上,引入膨胀率注意门和多尺度卷积(ConvMulti)模块.膨胀率注意门模块利用空洞卷积能得到更大的感受野,将编码器语义位置的局部区域像素联合到上采样区域,可以实现更加高效的跳跃连接.ConvMulti模块用来获取更加详细的高层特征信息,使编码器功能更强大.实验结果表明:本模型可以有效抑制图像噪声,大幅提高特征的表达能力,具有很强的鲁棒性,相比六种经典分割方法,所提出方法在交并比、F1分数和精度指标下分别达到72.25%,83.89%和97.47%. 相似文献
16.
人脸图像修复旨在修复输入人脸图像中的缺失区域,生成令人满意的高质量修复结果.然而当存在大面积缺失时,直接修复缺失人脸图像十分困难,此时修复网络的全局上下文信息感知能力是影响修复结果的关键.鉴于此,本文提出了软硬注意力相结合的双重自注意力模块.该模块通过全局相似度计算来获得软硬两种注意力特征,之后对两种注意力特征进行自适应融合,进而提高修复网络对全局上下文信息的感知能力.此外,本文进一步提出了多尺度生成对抗网络以加强对修复结果的监督,促使修复网络生成更高质量的修复结果.实验结果表明,本文方法在定量和定性评测上均优于五种先进的对比方法. 相似文献
17.
在婴幼儿脑组织分割领域中,婴幼儿脑组织存在对比度低、灰度不均匀等问题,这些问题导致现有方法的精度仍然达不到满意的结果.因此,本文提出了一种基于三维U-Net网络的脑部核磁共振图像组织分割方法,融合注意力机制模块和金字塔结构模块,可以更好地在不同的层次和位置提供模型信息,图像的上下文信息得到充分的应用以降低图像信息损失,同样还可以挖掘通道映射之间的相互依赖关系和特征映射,提高特定语义的特征表示.在Iseg2017数据集中所提出算法的WM(白质),GM(灰质)的DICE指标结果与此前最优结果相比提高了0.7%,0.7%,CSF(脑脊液)则具有可对比性.在Iseg2019跨数据集挑战的评估当中,WM,GM的分割结果在DICE,ASD两个指标均取得了第一名,CSF的指标获得第二名. 相似文献
18.
针对现有的皮肤镜图像分割算法存在边缘分割时效果较差和对中小目标的识别能力较弱等问题。本文提出了一种基于多尺度注意力融合的分割网络MAU-Net(Multi-scale attention U-Net)。MAU-Net网络是以U-Net网络为基础的分割模型,通过本文设计的多尺度注意力模块(MA),在特征提取时融合不同层次的特征,并将重要的目标特征给与一定的权重,从而使网络能更快和更精准的分割出目标区域。实验结果显示,在ISIC2017数据集上平均交并比(MIOU)、精确度(PRE)和kappa值分别为83.61%、93.58%和81.70%,性能比U-Net分别提高了5.27%、2.01%和6.83%;并在ISIC2017挑战赛数据集上进行了消融实验,实验结果验证了MA模型有助于网络性能的提升。本文提出的MAU-Net网络在皮肤病变分割任务中表现优异,同时具有良好的泛化性能。 相似文献
19.
青光眼是造成不可逆性失明的主要原因之一,患病早期无明显症状,容易错失最佳治疗时间。因此,青光眼的早期诊断具有重要临床意义。杯盘比是临床上用于青光眼诊断的重要指标之一,大都由医生人工测量和计算,容易受到主观因素影响且费时费力。为解决此问题,提出了一种基于U-Net改进的眼底图像视盘视杯分割算法,采用固定卷积核数提出少量关键特征。实验表明,所提算法不仅保证了高质量的分割效果,并且具有训练时间少、参数量小、加轻量化的特点,改进后算法有助于青光眼早期筛查智能化应用的推广。 相似文献
20.
针对生成对抗网络生成图像存在结构不完整、内容不真实、质量差的问题,提出一种结合语义分割图的注意力机制文本到图像生成模型(SSA-GAN)。首先采用一种简单有效的深度融合模块,以全局句子向量作为输入条件,在生成图像的同时,充分融合文本信息。其次结合语义分割图像,提取其边缘轮廓特征,为模型提供额外的生成和约束条件。然后采用注意力机制为模型提供细粒度词级信息,丰富所生成图像的细节。最后使用多模态相似度计算模型计算细粒度的图像-文本匹配损失,更好地训练生成器。通过CUB-200和Oxford-102 Flowers数据集测试并验证模型,结果表明:所提模型(SSA-GAN)与StackGAN、AttnGAN、DF-GAN以及RAT-GAN等模型最终生成的图像质量相比,IS指标值最高分别提升了13.7%和43.2%,FID指标值最高分别降低了34.7%和74.9%,且具有更好的可视化效果,证明了所提方法的有效性。 相似文献