首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fragility of fertility.   总被引:11,自引:0,他引:11  
P Yen 《Nature genetics》2001,29(3):243-244
  相似文献   

2.
3.
4.
The mojo of methylation.   总被引:10,自引:0,他引:10  
E Li 《Nature genetics》1999,23(1):5-6
  相似文献   

5.
6.
7.
The ABCs of cholesterol efflux.   总被引:13,自引:0,他引:13  
  相似文献   

8.
9.
10.
DNA, not d.o.a     
《Nature genetics》1999,21(3):243-244
  相似文献   

11.
X-linked dominant disorders that are exclusively lethal prenatally in hemizygous males have been described in human and mouse. None of the genes responsible has been isolated in either species. The bare patches (Bpa) and striated (Str) mouse mutations were originally identified in female offspring of X-irradiated males. Subsequently, additional independent alleles were described. We have previously mapped these X-linked dominant, male-lethal mutations to an overlapping region of 600 kb that is homologous to human Xq28 (ref. 4) and identified several candidate genes in this interval. Here we report mutations in one of these genes, Nsdhl, encoding an NAD(P)H steroid dehydrogenase-like protein, in two independent Bpa and three independent Str alleles. Quantitative analysis of sterols from tissues of affected Bpa mice support a role for Nsdhl in cholesterol biosynthesis. Our results demonstrate that Bpa and Str are allelic mutations and identify the first mammalian locus associated with an X-linked dominant, male-lethal phenotype. They also expand the spectrum of phenotypes associated with abnormalities of cholesterol metabolism.  相似文献   

12.
One of the most striking properties of RNA interference (RNAi) in Caenorhabditis elegans is its persistence in offspring after the triggering double-stranded RNA (dsRNA) has disappeared. A new study reveals that a heterochromatic silencing mark is deposited around the targets of RNAi and is transmitted through generations. These results show that RNAi can induce stable and heritable chromatin modifications in animals.  相似文献   

13.
14.
15.
Engineering a mouse balancer chromosome.   总被引:15,自引:0,他引:15  
Balancer chromosomes are genetic reagents that are used in Drosophila melanogaster for stock maintenance and mutagenesis screens. Despite their utility, balancer chromosomes are rarely used in mice because they are difficult to generate using conventional methods. Here we describe the engineering of a mouse balancer chromosome with the Cre-loxP recombination system. The chromosome features a 24-centiMorgan (cM) inversion between Trp53 (also known as p53) and Wnt3 on mouse chromosome 11 that is recessive lethal and dominantly marked with a K14-Agouti transgene. When allelic to a wild-type chromosome, the inversion suppresses crossing over in the inversion interval, accompanied by elevated recombination in the flanking regions. The inversion functions as a balancer chromosome because it can be used to maintain a lethal mutation in the inversion interval as a self-sustaining trans-heterozygous stock. This strategy can be used to generate similar genetic reagents throughout the mouse genome. Engineering of visibly marked inversions and deficiencies is an important step toward functional analyses of the mouse genome and will facilitate large-scale mutagenesis programs.  相似文献   

16.
17.
The extent of linkage disequilibrium in Arabidopsis thaliana.   总被引:20,自引:0,他引:20  
Linkage disequilibrium (LD), the nonrandom occurrence of alleles in haplotypes, has long been of interest to population geneticists. Recently, the rapidly increasing availability of genomic polymorphism data has fueled interest in LD as a tool for fine-scale mapping, in particular for human disease loci. The chromosomal extent of LD is crucial in this context, because it determines how dense a map must be for associations to be detected and, conversely, limits how finely loci may be mapped. Arabidopsis thaliana is expected to harbor unusually extensive LD because of its high degree of selfing. Several polymorphism studies have found very strong LD within individual loci, but also evidence of some recombination. Here we investigate the pattern of LD on a genomic scale and show that in global samples, LD decays within approximately 1 cM, or 250 kb. We also show that LD in local populations may be much stronger than that of global populations, presumably as a result of founder events. The combination of a relatively high level of polymorphism and extensive haplotype structure bodes well for developing a genome-wide LD map in A. thaliana.  相似文献   

18.
We have constructed a new generation yeast artificial chromosome (YAC) library from female C57BL/10 mice in a recombination-deficient strain of Saccharomyces cerevisiae carrying a mutation in the RAD52 gene. The YAC library contains 41,568 clones with an average insert size of 240 kilobases, representing a greater than threefold coverage of the mouse genome. Currently, the library can be screened by polymerase chain reaction and we have isolated positive clones at a number of loci in the mouse genome. This rad52 library should enable a long-term assessment of the effect of one of the yeast recombination pathway genes on both, genome-wide YAC clone stability and the frequency of chimaeric clones.  相似文献   

19.
Charcot-Marie-Tooth disease type 1A (CMT1A) is an autosomal dominant peripheral neuropathy associated with a large DNA duplication on the short arm of human chromosome 17. The trembler (Tr) mouse serves as a model for CMT1A because of phenotypic similarities and because the Tr locus maps to mouse chromosome 11 in a region of conserved synteny with human chromosome 17. Recently, the peripheral myelin gene Pmp-22 was found to carry a point mutation in Tr mice. We have isolated cDNA and genomic clones for human PMP-22. The gene maps to human chromosome 17p11.2-17p12, is expressed at high levels in peripheral nervous tissue and is duplicated, but not disrupted, in CMT1A patients. Thus, we suggest that a gene dosage effect involving PMP-22 is at least partially responsible for the demyelinating neuropathy seen in CMT1A.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号