共查询到18条相似文献,搜索用时 109 毫秒
1.
K-均值算法是文档聚类中常用的一种划分方法.近年来,为提高聚类质量,出现了不少优化初始中心的改进算法.该文在基于密度选择中心点算法的基础上,建立了相似度概率模型辅助密度参数的确定,有效减少了参数选择的盲目性.同时,该文提出一种二分快速确定K值最优解的方法.大量实验结果表明,该方法具有理想的效果. 相似文献
2.
一种基于相似性的文档聚类算法 总被引:2,自引:0,他引:2
针对常见信息检索技术的缺陷,提出一种基于相似性的文档聚类分析算法,将文档集合转化为向量集合,基于向量之间的余弦相似度,采取凝聚的层次聚类算法来获得聚类,给出了算法的详细描述的一个测试实例。 相似文献
3.
葛润霞 《山东师范大学学报(自然科学版)》2010,25(4)
随着网络的不断普及和发展,Internet为用户提供了一个极有价值的信息源.如何能够快速、准确地检索出用户感兴趣的信息,已经成为当前研究的热点.笔者引入蚂蚁堆形成原理实现聚类,使得聚类结果精度高,速度快,从而加快信息过滤速度提高过滤效率. 相似文献
4.
文章提出基于语义相似度的Web文档聚类算法--WDCSS算法,依据文档关键词之间的相似度生成最小树,通过概率统计来确定最小树中相似度阚值,并对最小树中进行切割,同时对较小的子类进行划分合并.实验表明,WECSS不仅能为具有各种不同聚类形状的数据集准确地分析出数据中存在的合理聚类和例外样本,而且避免了用户参数选择所造成聚类质最降低问题. 相似文献
5.
基于蚁群聚类的信息检索系统研究 总被引:2,自引:0,他引:2
网络信息量的急剧增加,使得信息检索的速度急剧下降。本文利用蚂蚁堆形成原理,进行了聚类分析,提出了一种蚁堆聚类算法,并应用到Web信息检索系统中。实验结果表明:蚁堆聚类精度高、速度快,提高了信息检索速度和效率。 相似文献
6.
7.
基于条件互信息下聚类的朴素贝叶斯分类算法 总被引:1,自引:0,他引:1
采用条件互信息来度量任意2个条件属性之间的关联程度,采用互信息度量各条件属性与类属性间的关联程度,以此作为将各条件属性进行聚类的准则,提出一种新的将条件属性进行聚类的分组技术.同时,结合朴素贝叶斯分类算法,构造了改进的朴素贝叶斯分类模型.通过仿真实验表明该文提出的算法具有较好的分类性能. 相似文献
8.
基于互信息的粗糙集信息检索模型 总被引:2,自引:0,他引:2
在信息检索过程中,由于文档中存在大量的多义和近义现象,导致不确定性出现,这将影响检索的性能.为此采用基于互信息的粗糙集理论来处理这类不确定性问题.首先计算训练文档集中的词之间的互信息,对互信息做模糊聚类来构造词之间的等价关系,然后借助于该等价关系提出并实现了一个以粗糙集上下近似为基础的信息检索模型,通过实验的测试,该模型能够提高信息检索的效率. 相似文献
9.
基于概念分组的Web搜索结果聚类算法 总被引:2,自引:0,他引:2
为了便于用户浏览搜索引擎返回的搜索结果,快速有效地定位有价值的Web文档,提出了基于概念分组的Web搜索结果聚类算法.首先,建立特征词同现网络,利用概念分组技术挖掘特征词之间的语义关联,形成主题概念类;然后,计算文档与各概念类之间的距离,据此实现Web搜索结果的聚类;最后,综合考虑特征词在类内和文档集中的重要性进行类别标签的选择.实验结果表明本算法具有较好的聚类性能,明显优于k-均值算法,且产生的类别标签容易理解. 相似文献
10.
文档聚类和词聚类都是重要且被充分研究的问题.大多数现有的聚类算法针对文档和词是分别聚类,不是同时的.本文提出文档集作为文档和词间的一个二部图的模型思想,使用这个思想,联合聚类问题可以被看成二部图的分割问题.为了解决图的分割问题,使用一个新的联合谱聚类算法,即使用适度规模的词-文档矩阵的奇异向量产生好的分割结果.谱算法得到一些最佳的性能,表明奇异向量通过连续放松解决图划分的NP难问题.最后通过实验结果验证联合聚类算法在实践中非常有效. 相似文献
11.
袁晓峰 《成都大学学报(自然科学版)》2010,29(3):249-252
设计了一种基于主题的Web文本聚类方法(HTBC):首先根据文本的标题和正文提取文本的主题词向量,然后通过训练文本集生成词聚类,并将每个主题词向量归类到其应属的词类,再将同属于一个词类的主题词向量对应的文本归并到用对应词类的名字代表的类,从而达到聚类的目的.算法分四个步骤:预处理、建立主题向量、生成词聚类和主题聚类.同时,对HTBC与STC、AHC、KMC算法从聚类的准确率和召回率上做了比较,实验结果表明,HTBC算法的准确率较STC、AHC和KMC算法要好. 相似文献
12.
提出一种第一特征选择的信息论方法.该方法考虑了第一特征和其他特征组合共同包含的类别信息.即使在非线性分类问题中也表现出良好的第一特征选择性能. 相似文献
13.
基于关联语义链网络提出了一种自适应分裂的文本聚类方法. 该方法通过从关联语义链网络中检测出各个社团结构作为文本集中的类别, 以避免对聚类数目的预先确定. 同时, 针对高维稀疏的词向量导致的文本之间或文本与类之间相似性低的问题, 将关联语义链网络中词与词之间的关联关系映射到文本与类之间的关联关系中去, 以增强文本与类之间关系的强度. 通过与其他主要聚类方法进行实验对比, 发现该聚类方法不仅能够对文本集合进行准确的聚类, 而且能够较准确地确定聚类中心数目和识别出文本集中的话题信息. 相似文献
14.
为提高Web 搜索精度和检准率, 在后缀树聚类算法基本模型的基础上, 提出了一种改进的基于后缀树的搜索结果聚类算法。将向量空间模型与后缀树聚类相结合, 改善了基类合并的效果, 综合基类节点对应文本数、短语包含词语长度、短语权重及是否包含查询词作为聚类标签的筛选条件, 改进了聚类标签的合理性和可读性。以搜狗语料库中的文本分类语料库为数据源进行的实验结果表明, 该方法在一定程度上提高了聚类结果的准确率。 相似文献
15.
针对基因表达谱数据的高维度、低样本和连续型等特点,提出一种结合邻域互信息和自组织映射进行特征基因选取的方法.首先提出一种改进的Relief算法,对基因进行排序生成候选特征集合;然后提出基于邻域互信息的自组织映射算法对生成的候选特征基因进行聚类;最后利用提出的属性重要性系数从每一类簇中选择代表基因组成特征基因子集.实验结果表明,该方法可以快速有效地选取肿瘤特征基因,能获得较好的分类结果. 相似文献
16.
基于Web的个性化学习是在远程学习和个性化服务相结合的基础之上发展起来的.利用Web挖掘的方法,针对用户的兴趣变化,搭建了个性化学习系统.并且通过模拟实验,验证该系统的有效性. 相似文献
17.
一种改进的互信息特征选取预处理算法 总被引:3,自引:1,他引:3
讨论了基于互信息的特征选取算法在文本分类中的性能问题,分析了利用这种特征选取算法存在分类精度不高的原因,认为互信息为负值的特征在分类中具有很重要的作用.在此基础上提出了一种基于互信息特征选取的改进算法,该算法加强了互信息为负值的特征在分类中的作用.实验结果表明,改进后的算法可以有效地提高文本分类精度。 相似文献
18.
基于PBS的工程文档信息分类与集成方法 总被引:2,自引:0,他引:2
按项目时间、文档内容、文档文件类型等对工程文档信息进行分层 ,以PBS为标识系统 ,形成工程文档编码的目录集成结构模型 .该模型不仅可为业主方所使用 ,也可为项目的参与者如项目管理方、设计方、施工总包方所共享 ,提供及时、准确的项目实施信息为项目的决策者和管理者服务 相似文献