首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
通过正交实验和单因素实验探讨了以椰壳渣为原料、KOH为活化剂制备高比表面积活性炭的最佳工艺条件.考查了炭化温度、活化温度、活化时间、活化剂料比等因素对实验结果的影响.在炭化温度为600℃、碱炭质量比为2∶1、活化温度为900℃、活化时间为90 m in条件下,制备出以微孔为主、比表面积达2 180 m2.g-1、总孔容为1.19 mL.g-1的高比表面积活性炭.  相似文献   

2.
KOH活化石油焦制备工艺对活性炭吸附性能的影响   总被引:3,自引:0,他引:3  
以固-固混合方式,用KOH活化石油焦制备了高比表面积活性炭,研究了活化温度、碱炭比、原料粒度、活化时间、预处理温度及氮气流速等因素对活性炭的碘值和亚甲基蓝吸附值的影响,并用液氮吸附法分析了高比表面积活性炭的孔隙结构.结果表明:活化温度、碱炭比、原料粒度、活化时间,以及中间处理温度和氮气流速对活性炭的碘值和亚甲基蓝吸附值均有明显的影响;在一定的条件下,可制备出比表面积大于3000m2/g、比孔容积达1.80cm3/g、碘吸附值为2714mg/g、亚甲基蓝吸附值为510mg/g的活性炭.活性炭的吸附特性可以通过石油焦原料的改性和各种工艺条件的优化进行调控.  相似文献   

3.
以巨菌草作为原料,化学活化法制备高比表面积活性炭,在单因素考察基础上,采用响应面分析法对活化温度、活化时间、碱炭比等影响因素进行了条件优化.通过模型分析确定了最佳制备工艺条件为活化温度920℃、活化时间50 min、碱炭比4∶1,该条件下制备的巨菌草基活性炭实际碘吸附值与预测值相近,证明响应面法模型优化分析结果可靠.通过BET、IR和SEM等进行表征,表明所制备的巨菌草基活性炭表面官能团种类丰富,孔隙结构发达,达到了超级活性炭的标准,为巨菌草基活性炭的开发应用提供了制备工艺参数及材料性能参考.  相似文献   

4.
废植物炭制活性炭的研究   总被引:11,自引:0,他引:11  
研究废植物炭制活性炭的可行性及效果,探讨了以水蒸汽为活化介质时活化工艺条件对活性炭吸附性能的影响,确定了最佳活化工艺条件,并对活性炭的孔结构进行了分析探讨。结果表明,利用废植物炭制活性炭是可行的,得到的活性炭具有较高的吸附性能和丰富结构。废植物炭的种类和灰发含量决定其活性炭的吸附性能。活化后活性炭表面积的增加主要源于其微孔表面积的增加。  相似文献   

5.
以晋城无烟煤为原料,先经浮选和酸洗脱灰,得到灰分1.2%的超低灰无烟煤,再将其与活化剂KOH按比例混合、粘结成型,并经活化处理制备高比表面积活性炭。主要考查了碱炭比、活化温度和活化时间对活性炭比表面积及收率的影响。结果表明,晋城超低灰无烟煤制备高比表面积活性炭的最佳工艺条件为:碱炭比5∶1,活化温度800℃、活化时间1 h,活性炭的BET比表面积为1 800.71 m2/g,孔径大小分布于0.3~5 nm之间,以微孔为主。  相似文献   

6.
微波法污泥活性炭的制备技术研究   总被引:1,自引:0,他引:1  
以城市污水处理厂污泥为原料,考查了固液比、活化剂浓度、浸渍时间和活化时间等因素对氢氧化钾活化-微波加热制备污泥活性炭碘吸附值和产率的影响.在单因素试验的基础上进行正交试验,获得了此工艺制备污泥活性炭的最佳条件,即:固液比1g:1.5m L,氢氧化钾浓度0.40mol·L-1,浸渍时间24h,活化时间420s.此工艺条件下制备的污泥活性炭碘吸附值为537.63 mg·g-1,比表面积为354 m2·g-1,产率为74.09%,吸附性能和产率均优于传统方法制备的污泥活性炭.  相似文献   

7.
周颖 《石河子科技》2015,(3):38-40,43
选用新疆独山子地区石化厂石油焦作为原材料,用KOH作为活化剂,采用化学活化法制备超级活性炭。制取过程中分别列举了碱炭比值、活化作用时间、活化维持温度等工艺参数对活性炭碘吸附值的影响;利用液氮吸附法对活性炭的比表面积、孔容孔径分布进行了表征。结果表明:在制备超级活性炭的过程中,碱炭比、活化温度和活化时间等条件起到关键作用,当碱炭比为4,活化温度为800℃时,活化时间为1.5h时,可以制得比表面积为2 411m2/g,孔容为1.11cm3/g,碘吸附值为2 536mg/g的石油焦基活性炭。  相似文献   

8.
以山西阳泉无烟煤为原料,NaOH为活性剂,采用化学活化法对煤基高比表面积活性炭的制备进行实验分析研究,着重考察了碱炭质量比、活化温度和活化时间对活性炭吸附性能的影响。结果表明,在碱炭比为4、活化温度为800℃、活化时间为1 h的条件下,可以制得比表面积为2 637 m2/g、总孔容为1.36 cm3/g、碘吸附值为2 893 mg/g、亚甲蓝吸附值为476 mg/g的煤基高比表面积活性炭。  相似文献   

9.
为了解决制药行业土霉素菌渣处置的难题,该文以土霉素菌渣为原材料,K2CO3为活化剂,采用化学活化法制备土霉素菌渣活性炭.通过电镜扫描和氮气吸附对较佳条件下制备的活性炭特性进行了表征.实验得出制备土霉素菌渣活性炭的较佳工艺条件为:活化温度800℃,活化时间3h,活化比1∶3.该活性炭的苯酚吸附值为215 mg/g,比表面积达1 593.09 m2/g,亚甲基蓝吸附值为117 mg/g.该活性炭孔结构丰富,主要以微孔为主,平均孔径为1.09 nm,微孔孔容为0.54 cm3/g,中孔孔容为0.27 cm3/g.  相似文献   

10.
以城市污水处理厂污泥为原料,研究了氢氧化钾活化-微波加热制备污泥活性炭的工艺条件,考查了固液比、活化剂浓度、浸渍时间和活化时间等因素对活性炭碘吸附值和产率的影响。在单因素试验的基础上采用正交试验,得到试验室条件下微波法制备污泥活性炭的最佳工艺条件,即:固液比1g:1.5mL,氢氧化钾浓度0.40mol.L-1,浸渍时间24h,活化时间420s。此工艺条件下制备的污泥活性炭碘吸附值为537.63 mg.g-1,产率为74.09%。  相似文献   

11.
Using viscose fiber (VF) as starting material and common steam as activating agent, formation of oxygen structures in activated carbon fiber is investigated. In the preparation of samples, VF was first heated at temperatures between 450℃ and 900℃ in N_2 artmosphere. Then, in a successive activation stage, the product carbonized at 600℃ was activated in steam at 450-900℃ for 30 min, and at 600℃ for 5-30 min. The other carbonization products were activated at 600 and 900℃ for 30 min respectively. The products activated at 900℃ were then activated at 450℃ for 30 min again. The starting materiah carbonized products and all activation products were examined by FT-IR spectroscopy and some products were examined by X-ray photoelectron spectroscope (XPS). And the yields of the carbonized and activated products were calculated. By analysing these spectra, the amount of oxygen-containing functional groups of the activated products attained under various activation time, various activation temperature and  相似文献   

12.
利用物理吸附分析仪和扫描电子显微镜分别对原料煤成型、炭化和活化过程中的物料形貌和孔结构进行表征研究.结果表明,活性炭制备过程中的炭化和活化工艺是煤基活性炭最为关键的工艺过程之一,对煤基活性炭成孔效果有重要的影响.如果只对物料进行炭化处理而不进行活化工艺,则物料不会形成活性炭所具有的发达的孔隙结构;反之,如果不经过炭化过程而直接进入活化阶段,其结果是尽管可以使活化料产生一定的孔隙结构,然而由于其比表面积和孔容增长有限,达不到预期的吸附效果.物料依次进行适当的炭化和活化过程,产物的孔结构才能得到充分发展,从而才能制备出满足一定需要的活性炭产品.  相似文献   

13.
以Courtaulds纤维为原料,采用连续化碳纤维生产线制备出稳定的预氧纤维,通过连续化活化炉进行预碳化和水蒸气物理一步活化,制备出具有高吸附性能和高拉伸强度的聚丙烯腈基活性碳纤维(PAN-ACFs)丝束。借助比表面积(BET)、广角X射线衍射(WAXD)、力学性能和碘吸附等表征测试手段研究了水蒸气量对PAN-ACFs孔结构及力学性能的影响。结果表明:在适当的活化时间、活化温度下,逐步增加水蒸气的流量,活性碳纤维的吸附能力先快速增大,而后稳定,最后再缓慢地增加;纤维的拉伸强度呈现出先增大后减小的变化趋势;当水蒸气流量为1g/min,起始的温度为650℃,高温区为850℃,活化时间为20min时,所制备的PAN-ACFs具有相对较高的吸附性能、力学性能和碳化收率。  相似文献   

14.
介绍了用粘胶纤维毡在真空设备中经碳化活化工艺制备活性碳纤维 (ACF)毡的研究工作。论述了制备粘胶基 ACF毡适用的预处理介质、碳化活化原理以及工艺参数的确定 ;给出了 X射线衍射对ACF毡晶体结构分析结果。工艺试验表明 ,用真空设备制备高性能ACF切实可行。  相似文献   

15.
简要介绍了活性炭生产工艺流程,重点讨论了炭化温度、炭化升温速度、活化温度、活化时间、炭化料粒度、水蒸气压力和流量等工艺条件对大同煤生产中孔发达活性炭吸附性能的影响。  相似文献   

16.
聚丙烯腈、N,N-二甲基甲酰胺和钛酸四丁脂水解溶胶的混合液通过静电纺丝、预氧化、炭化、活化制备TiO2/活性炭复合纳米纤维膜.基于静态吸附试验,考察了不同TiO2/活性炭复合纳米纤维膜投加量、亚甲基蓝初始质量浓度、温度、pH值条件下,TiO2/活性炭复合纳米纤维膜对亚甲基蓝的吸附性能,并用Langmuir等温吸附方程、Freundlich等温吸附方程、准一级动力学方程,准二级动力学方程、颗粒内扩散方程进行了拟合,结果表明,Freundlich经验公式、准二级动力学方程能较好地描述TiO2/活性炭复合纳米纤维膜对亚甲基蓝的吸附行为.研究表明,吸附量随温度升高而增加,吸附效率受颗粒内扩散影响.无论是紫外光还是太阳光照射,TiO2/活性炭复合纳米纤维膜都具有很好的光催化再生性能.  相似文献   

17.
采用溶胶一凝胶法,以间苯二酚(R)和糠醛(F)为原料,环六次甲基四胺(HMTA)作催化交联剂,通过常压干燥和高温碳化、活化等工艺制备分散性良好的炭气凝胶.研究溶剂的pH值和活化温度等工艺参数对炭气凝胶的比表面积和用作超级电容器电极的比电容的影响.确立具有最大比电容时炭气凝胶的最佳制备工艺条件.结果表明,当pH-9.0,活化温度为950℃时获得的炭气凝胶具有最大的比表面和.比电容.  相似文献   

18.
以Ni2 改性的聚苯乙烯阳离子交换树脂和聚苯胺树脂为炭化预聚体 ,制备出了锂离子电池炭负极材料 ,考察了炭化制备工艺对炭负极材料充电放电性能的影响。实验结果表明 ,采用Ni2 改性的聚苯乙烯阳离子交换树脂和聚苯胺树脂制备锂离子电池炭负极材料时 ,炭化处理温度并不是越高越好 ,而是在一定温度范围内 ,低温处理样品的充电放电容量反而比高温处理样品的要高 ;在还原性气氛中炭化处理样品的充电放电容量明显高于惰性气氛中炭化处理的样品。实验数据还表明 ,在相同处理条件下 ,树脂炭化产物的粒度越小 ,制备出的锂离子电池炭负极材料的充电放电容量就越大  相似文献   

19.
本研究以茶梗为原料,以氯化铜为活化剂,化学法制备载铜茶梗活性炭,采用响应面法优化所制备活性炭的吸附性能.在单因素实验的基础上选取浸渍比、氯化铜浓度、活化温度、活化时间为影响因子,利用Box-Behnken中心组合试验(简称BBD)进行4因素3水平的试验设计,以活性炭得率和碘吸附值作为响应值,进行响应面分析.结果表明,制备活性炭的最佳条件为:氯化铜浓度为25%、浸渍比为4、活化温度为600℃、活化时间为5 h,在此条件下,制得的活性炭的碘吸附值为453 mg/g、得率为47.09%.在优化条件下,制得的活性炭的碘吸附值和得率与预测值基本符合,所以据响应面法原理,对相关影响因素进行试验优化设计可行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号