首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【目的】通过对不同热解温度下杨树树叶、树枝、树皮生物质炭和秸秆生物质炭的理化特性及结构进行分析,筛选出更适用于林地土壤改良的农林废弃物种类和热解温度。【方法】以杨树不同组分树叶、树枝、树皮和秸秆等4种农林废弃物为原料,分别在300、500和700 ℃温度下制备生物质炭,测定其产率、pH、全碳、全氮含量、阳离子交换量(CEC)、比表面积和表面官能团等指标。【结果】随着热解温度的升高,4种原料生物质炭的产率逐渐降低,灰分含量和pH升高。同一热解温度下,树枝和树皮生物质炭的全碳含量高于树叶和秸秆生物质炭的,而全氮(TN)、全磷(TP)和全钾(TK)含量均低于树叶和秸秆生物质炭的。4种生物质炭水溶性盐基离子含量和交换性盐基离子含量均随着热解温度的升高而增加,树叶生物质炭的阳离子交换量总体高于其他3种原料的生物炭。树叶和树皮生物质炭的比表面积和总孔容积总体大于树枝和秸秆生物质炭,树皮和树叶生物质炭在700 ℃时比表面积分别高达597.02和121.01 m2/g。4种原料生物质炭的表面官能团种类基本相同,以芳香骨架为主,表面官能团数量均随着热解温度的升高而减少,芳香化程度增强。【结论】在不同热解温度和原料制备的生物质炭中,树叶和秸秆生物质炭的灰分、pH、N、K和盐基离子含量较高,比较适用于改良酸性土壤,增加土壤养分;而杨树树枝和树皮生物质炭含碳量较高,则适用于土壤固碳,提高土壤有机质含量。其中,500 ℃热解的杨树树叶生物质炭综合性能最好,氮、磷、钾养分耗失最少,阳离子交换能力较强,比表面积大,更适用于土壤改良。  相似文献   

2.
生物炭对土壤重金属吸附机理研究进展   总被引:1,自引:0,他引:1  
生物炭是生物质在缺氧或是无氧条件下低温热解而成的高富碳产物,其精致的孔隙结构与较大的比表面积,丰富的表面官能团,使其对重金属离子具有较强吸附能力.近年来,生物炭修复土壤重金属污染已成为研究热点.文章对生物炭的性质、吸附重金属的作用机理、影响生物炭吸附的各个因素以及修复土壤后对重金属生物有效性等方面进行综述,最后提出生物炭未来在修复土壤重金属污染方面的研究方向.  相似文献   

3.
为了探究热解温度对以黄豆秸秆制备生物炭对土壤重金属Pb及Cd的吸附及钝化性能,以黄豆秸秆为原材料,在300,500和700℃热解温度下制备生物炭,并探究其对土壤重金属铅锌的钝化作用。实验结果表明随热解温度升高,生物炭中碳含量呈现上升趋势,且pH由8.95升高至10.23,灰分的含量却由34.5%下降至28.6%。热解温度能对生物炭吸附重金属Pb及Cd产生影响,并且热解温度升高,重金属吸附量呈现上升趋势,并且当热解温度为700℃时,生物炭对Pb及Cd的吸附量分别为1.2和26.8 mg/g。进一步探究表明热解温度能够提高生物炭对Pb及Cd的钝化性能,机制研究表明生物炭能够提高土壤中pH,并且热解温度升高提高了残渣态Pb及Cd的含量而降低酸可提取态Pb及Cd的含量。  相似文献   

4.
基于重金属污染土壤植物修复过程中产生大量含重金属的生物质收获物,以含重金属芦竹收获物为研究对象,通过在芦竹收获物中添加化学固定材料,研究其热解制备生物炭过程中As,Cd和Pb等重金属的稳定与富集特征。研究结果表明:热解过程中生物质中重金属主要富集在生物炭中,其质量分数及存在形态明显受热解温度、热解时间、固定材料种类及添加量等因素影响;在250℃下添加0.5%(质量分数,下同)的Na OH、热解0.50 h,生物炭产率达到86%;芦竹生物质热解制备生物炭过程中As的稳定适宜条件为在300℃添加2%Na OH,热解2.00 h;Cd的稳定适宜条件为在250℃添加5%Fe Cl3,热解0.50 h;Pb的稳定适宜条件为在400℃添加5%Ca CO3,热解1.00 h;添加Fe Cl3热解得到的生物炭比表面积达到0.31 m2/mg,重金属固定率提高;添加固定材料Na OH后热解制备的生物炭中As主要以残渣态存在,添加Ca CO3,Al2O3和Fe Cl3等固定材料后热解制备的生物炭中As主要以可氧化态存在;添加Na OH,Ca CO3,Al2O3和Fe Cl3等固定材料后热解制备的生物炭中Cd主要以残渣态存在,Pb主要以可氧化态存在。  相似文献   

5.
不同热解温度生物炭改良铅和镉污染土壤的研究   总被引:5,自引:0,他引:5  
 为了探究热解温度对生物炭修复重金属污染土壤的影响,将300℃、500℃和700℃下制备的生物炭加入铅(Pb)和镉(Cd)污染土壤进行培养,检测重金属形态的变化。结果表明,加入生物炭培养60d后,Pb和Cd污染土壤pH值较对照上升0.35—0.86单位值,土壤中重金属的酸可提取态含量下降,残渣态含量上升,对目标重金属生物有效性降低的改良效果700℃>500℃>300℃;在生物炭添加量相同的情况下,复合污染土壤中Pb的残渣态含量比对应单一污染高50.60%—72.79%,而复合污染土壤中Cd的酸可提取态含量较对应单一污染高7.53%—12.99%;热解温度影响生物炭的表面特征和吸附重金属机制,进而影响生物炭改良土壤中目标重金属形态分布。  相似文献   

6.
玉米秸秆颗粒燃料热解气化试验研究   总被引:1,自引:0,他引:1  
以玉米秸秆颗粒燃料为原料,研究了生物质空气热解气化(下吸式固定床气化炉)、富氧热解气化(鼓泡式流化床气化炉)和无氧热解气化(慢速连续热解气化炉)的热解气化特性.三种热解气化装置并联,共用一个控制系统,产生的生物质燃气经过冷凝器等后进入储气柜.燃气成分由气相色谱分析,成型颗粒、颗粒炭、生物油热值采用快速量热仪测量分析.结果显示,空气热解气化在热解温度为660~670℃时燃气低热值最高,约为3.91~4.44MJ/Nm3;富氧热解气化燃气低热值最高可达8.48~9.38MJ/Nm3(热解气化温度为575~750℃时);无氧热解气化在热解温度为380~530℃时的燃气低热值约为14.51~16.49MJ/Nm3,并可联产生物炭、生物油等.  相似文献   

7.
为废弃的烟杆、烟叶寻求资源化利用途径,为生物炭配合生物质农用提供科学依据,探究了烟杆生物炭配施烟叶生物质的混合材料对土壤氮磷钾养分有效性的影响。在室内恒温条件下开展培养试验,共设4个处理,包括不施生物质材料照(CK)、100%烟杆生物炭(T1)、70%烟杆生物炭+30%烟叶生物质(T2)、30%烟杆生物炭+70%烟叶生物质(T3)。结果表明:添加烟杆生物炭和烟叶生物质混合材料能够显著提高土壤铵态氮和硝态氮含量,T3处理对土壤铵态氮提升幅度最大,增幅为141.09%~161.21%;T2处理对土壤硝态氮提升幅度最大,增幅为207.52%~239.45%;培养期内,CK处理土壤有效磷、缓效钾和速效钾含量均显著低于T1,T2,T3处理,T1处理均显著高于T2,T3处理,培养结束后T1处理相较于对照土壤有效磷、缓效钾、速效钾增幅分别为257.76%~283.67%,209.30%~216.67%,450.00%~472.00%。添加烟杆生物炭和烟叶生物质混合材料可显著提高土壤有效氮磷钾素含量,不同配比效果不同,需根据生产实际选择适宜配比。  相似文献   

8.
文章采用热重分析法研究生物质热解炭与煤及其混合物在不同升温速率、不同掺混比例的条件下从室温加热至1 000℃的燃烧特性,并利用Flynn-Wall-Ozawa(FWO)法计算燃烧过程中样品的动力学特性参数。结果表明:生物质热解炭的燃烧行为与煤类似,但其燃烧性能要好于煤;升温速率的提高使得样品的微分热失重(derivative thermogravimetric, DTG)曲线向高温区移动且会产生燃烧热滞后现象,但样品的残余量不会有显著变化;煤掺烧生物质热解炭会改善其燃烧性能,随着生物质热解炭掺混比例的增加,混合物的残余量随之减少,着火性能和燃烧性能逐渐提升;生物质热解炭与煤混燃时会出现协同效应,高温区域协同效应更加显著;活化能的相关系数均高于0.97,混合样品中生物质热解炭掺混比例为70%的样品活化能最小,活化能为105.38 kJ/mol。  相似文献   

9.
为了探讨生物质种类对制备热解生物炭吸附去除污染物性能的影响,以水曲柳、花生壳及牛粪为生物质原料,在400℃下热解4 h制备生物炭(FM-BC、PS-BC和CM-BC).对生物炭的产率、灰分、元素组成和表面官能团的变化进行了分析.结果表明,牛粪生物炭的产率最高(57.9%)、灰分最高(66.9%),同时碱性基团和酸性基团数量之比最大.用X射线衍射(XRD)、傅立叶变换红外光谱(FTIR)及场发射扫描电子显微镜(FESEM)进行了表征,结果表明,除牛粪生物炭外,其他两种生物炭生成了完全无定形的碳;观察生物炭的形貌,都呈现出多孔炭架结构,孔隙结构非常丰富,并且PS-BC的孔道轮廓更清晰完整.以Pb~(2+)为模型污染物,通过序批式吸附实验比较了不同生物炭的吸附性能,研究了其吸附热力学和动力学行为.在25℃及p H=5.5条件下,FM-BC、PS-BC和CM-BC对Pb~(2+)的饱和吸附量分别为11.99、31.9和197.99 mg·g~(-1),吸附能力由大到小的顺序为CMBCPS-BCFM-BC.吸附速率常数分别为0.001 37 g·mg-1·min~(-1),0.000 78 g·mg~(-1)·min~(-1)和0.068 g·mg~(-1)·min~(-1),吸附速率由大到小的顺序为CM-BCFM-BCPS-BC.研究证明,生物质的种类影响着生物炭对Pb~(2+)的吸附性能.  相似文献   

10.
通过低温(77 K)氮气吸附/脱附等温实验,结合分形维数的概念,分析生活污水污泥在不同热解终温和保留时间下经热解获得的生物质炭孔隙结构变化特征。实验结果表明,随着热解终温的提高,污泥生物质炭BET的比表面积呈先升高后降低的趋势,在600oC时达到最大,为92.3 m~2/g。在低温(不超过500oC)下,污泥生物质炭中的孔以介孔为主,无微孔出现;在高温(超过500oC)下,则以微孔和介孔为主。随热解终温的升高,孔的形状由狭缝型向开放性和平行板式转变,保留时间的延长不改变孔的形状,但改变孔的容积。污泥生物质炭表面分形维数随热解终温升高呈增大趋势;而保留时间的延长,在中高温(600~700oC)下使污泥生物质炭表面分形维数降低,高温(超过700oC)下又使其提高。  相似文献   

11.
城市产生的固体垃圾数量逐年上升,使得垃圾渗滤液成为一个重大问题,亟待解决。在无氧或缺氧状态下,将生物质经高温热解制备富碳的生物炭并用于污水处理,是“以废治废”思路的重要实践。生物炭主要是来源于农作物废弃物、城市垃圾等低成本原料,在农业和环境领域内应用范围广。我国幅员辽阔,各类生物质资源丰富多样,但现阶段生物质资源的不合理处置,也造成大量浪费和环境问题。基础研究表明,将生物质废弃物的治理与渗滤液的处理相结合可实现以废治废。该文首先简要介绍垃圾渗滤液处理工艺,然后阐述生物炭材料在垃圾渗滤液处理工艺中的应用及前景。  相似文献   

12.
生物质快速热裂解炭的分析及活化研究   总被引:1,自引:0,他引:1  
采用化学(KOH)方法对两种具有代表性的生物质原料(花梨木和稻壳)的快速热裂解固体产物-热解炭进行了活化,并采用氮吸附、X射线衍射(XRD)、傅里叶红外光谱分析(FTIR)和扫描电镜(SEM)技术测试了热解炭的结构特性、表面特性以及物理化学性质.结果表明,这两种热解炭经过活化后可以获得许多优良的性质,固定碳含量增加,灰分含量减少.同时,活化后BET比表面积迅速增大,超过1100m2/g,而且热解炭的石墨化程度都有所加深.热解炭通过活化过程可以实现其高品质利用,有利于生物质热裂解技术的工业化发展.  相似文献   

13.
微生物与生物炭复合修复铬污染土壤的室内试验研究   总被引:1,自引:0,他引:1  
以铬污染土为研究对象,通过浸出试验、Cr(VI)残留值试验、BCR连续提取试验研究了巴氏芽孢杆菌、生物炭及巴氏芽孢杆菌与生物炭复合对铬污染土壤的修复效果。结果表明:经过20 d修复后,上述添加剂均能够修复铬污染土壤,但菌液与生物炭复合的修复效果优于菌液和生物炭,且菌液的修复效果要优于生物炭;其中,当菌液浓度OD600 为1.0与生物炭浓度40 g?kg-1复合时,土壤浸出浓度和土壤中Cr(VI)含量分别从90 mg?L-1、270 mg?kg-1降低至1.08 mg?L-1、5.14 mg?kg-1,修复效果最好;同时,3种添加剂均提高了土壤的pH,均促使铬从弱酸态向可还原态和残渣态转化,而对可氧化态铬影响不大;由X射线光电子能谱分析(XPS)分析可知巴氏芽孢杆菌与生物炭复合修复铬污染土壤为混合吸附和还原的过程。  相似文献   

14.
为了探讨生物炭对铅污染土壤的修复效果,以耕作农田土壤为供试土壤,分别向其中加入200mg·L~(-1)与1 000mg·L~(-1)铅溶液进行人为污染,采用1%、5%生物炭修复剂BC400(中药渣生物炭与花生壳生物炭1:1)进行修复处理,分析测定了印度芥菜(Brassica juncea)生长前后土壤pH值、土壤铅含量、种子萌发率以及植物体内铅含量的变化.研究结果发现,人为加铅污染后,土壤pH值下降、NH_4NO_3浸提态铅含量上升、植物株高、茎粗均下降,植物体内重金属含量上升.加入生物炭修复剂后,可有效改善土壤pH值,提高种子萌发率及植株的高度和茎的粗度,显著降低NH_4NO_3浸提态铅含量、植物铅含量,且5%生物炭修复剂的改善效果优于1%.生物炭应用可铅污染土壤,有效降低重金属对植物生胁迫作用,可用于重金属污染土壤的生物修复.  相似文献   

15.
生物炭在土壤应用过程,不可避免地会对与土壤之间接触的机械设备部分产生腐蚀作用。为探究生物炭应用于农业生产中对机械设备以及金属工具损耗的影响,采用分别在700、400和100℃温度下裂解制备的小麦秸秆生物炭(WB)、水稻秸秆生物炭(RB)和松木生物炭(PB)的生物炭对304不锈钢板材进行腐蚀处理,并测量其极化曲线和电化学阻抗谱和腐蚀表现。结果表明:与空白组(CK)对比,相较于304不锈钢的腐蚀速率,在施入WB的土壤中,腐蚀速率会随着WB裂解温度的增大而增大;而加入RB的土壤会加剧不锈钢的腐蚀,其中在加入400℃RB的土壤中腐蚀速率达到最大;这是因为WB和RB的加入会提升土壤中的Cl~-含量至足以达到点蚀效应的程度加速了不锈钢板材的腐蚀。与此同时,发现100℃制备的PB生物炭可以抑制不锈钢的腐蚀。总而言之,不同生物质和制备温度的生物炭在土壤实际应用中表现出不同的腐蚀和抗腐蚀特性,因此深入研究这些方面将为其农业应用具有深远影响。  相似文献   

16.
以水稻秸秆为原材料,研究不同热解温度(350,450,550,650,750℃)对生物质炭的产率、pH值和8种元素含量以及挥发特性的影响.结果表明:当热解温度由350℃上升至750℃时,生物质炭pH值介于9. 54~10. 90之间,并呈现先升高再下降的趋势;产率由43. 7%下降至31. 2%;全碳(TC)和全氮(TN)的含量分别从433. 72 g·kg-1和12. 53 g·kg-1下降至355. 37 g·kg-1和4. 34 g·kg-1,而全磷(TP)、全钾(TK)、铜(Cu2+)和钼(Mo2+)的含量则表现为升高,锌(Zn2+)和锰(Mn2+)含量与pH值变化趋势相近.在热解过程中TC和TN挥发最多,而TK和Cu2+则表现为富集.回归分析发现,热解温度与生物质炭pH、产率和元素含量(Zn2+除外)均呈极显著线性关系(P 0. 01).  相似文献   

17.
研究温度对生物炭得率、吸附性能的影响.采用无氧慢速热解的方法,以酶解木质素为原料,制备不同温度下的生物质炭,测定热解得率、生物炭得率、挥发分、灰分及对亚甲基蓝的吸附值.热解试验结果表明:随着炭化温度从300℃逐渐升高到700℃,热解得率先降低后升高,挥发成分先升高后降低,生物炭得率先降低后升高.在500℃时,热解得率和生物炭得率分别为54.09%和50.77%,灰分含量为3.32%,挥发分含量为45.91%;热解温度为300℃时,木质素基生物炭对亚甲基蓝的吸附值最大,为37.31 mg/g;热解过程中,C—H、C=O键断裂.  相似文献   

18.
生物炭是在低氧条件下生物质经过热裂解得到的含碳丰富的产品,可提高土壤酸碱度,具有保水保肥及改善土壤微生物特性等功能。综述了生物炭对土壤微生物生物量、微生物群落结构及土壤酶活性的影响,多数研究表明:生物炭的碱性性质及多孔性质提供了适宜微生物生长的微环境,从而增加了土壤微生物生物量碳、微生物生物量氮等的含量; 生物炭含有的营养物质及多孔性质,促进了土壤中细菌及某些功能菌的生长,但同时生物炭中含有的重金属及多环芳烃等有毒物质对细菌生长存在抑制作用; 相比于土壤细菌,生物炭碳氮比(C/N)高、含大量难降解碳化合物,则有利于土壤真菌生长,并且生物炭具有的较大孔隙度,为真菌菌丝提供了附着位点; 生物炭对微生物的促进作用间接提高了土壤中脱氢酶、脲酶、β-葡萄糖苷酶等土壤酶活性。因此,未来应进一步探索生物炭与土壤微生物之间的相互作用机理,深入了解生物炭的土壤改良作用,深化对土壤微生物多样性的认识。  相似文献   

19.
为研究生物质碳烟的氧化反应活性,在沉降炉反应器中于1 000、1 100、1 200、1 300℃温度下对麦秆和木屑2种生物质进行了热解,获得了生物质热解碳烟样品。采用热重分析法测试了不同热解温度下产生的碳烟的氧化活性,研究了热解温度、生物质中碱金属对碳烟氧化活性的影响。结果表明:随着热解温度的升高,2种生物质碳烟的氧化活性表现出不同趋势,即木屑碳烟的氧化活性提高,而麦秆碳烟的氧化活性降低;麦秆相对木屑具有显著高的碱金属(主要为KCl)含量;水洗碳烟的氧化活性明显降低,表明KCl颗粒可以显著促进碳烟的氧化;X射线衍射(XRD)及粒径分析显示,随着热解温度的提高,2种生物质碳烟的石墨化程度提高,单个颗粒的几何平均粒径变小。因此认为,木屑碳烟的活性主要受碳烟粒径的影响,而麦秆碳烟由于其中含有明显多的碱金属颗粒(绝大部分为KCl),其活性受碱金属盐和粒径、内部结构等的综合作用。  相似文献   

20.
本研究将生物质炭(2%,质量分数)施加到重金属污染农田土壤中,并采用盆栽试验方法种植小白菜,以考察生物质炭对废弃农田土壤中重金属(Cd、Pb、Cu、Ni、Zn和Cr)的总量和形态、小白菜生物量及其吸收重金属的影响。结果表明:生物质炭对土壤中Cd、Cu、Ni的总量无显著影响,而对Pb、Zn和Cr总量的影响主要与生物质炭吸附能力差异对淋溶损失的影响有关。生物质炭对土壤中重金属形态的影响与生物质炭和重金属的种类有关:生物质炭对Pb和Zn形态的影响程度最大,Cd和Cu次之,但对Ni和Cr形态几乎无影响。生物质炭(除了CC6)使小白菜的干重显著增加了27%~78%(P <0.05),这可能与生物质炭使土壤有机质含量显著增加以及总氮和总磷略有增加有关。除Pb外,生物质炭对小白菜吸收其余重金属无显著影响(P> 0.05)。本研究土壤中Cr超过了农用地土壤污染风险管控标准限值而Pb和Cd均未超标,但对照组和生物质炭处理组的小白菜中Cr、Pb和Cd均超过了食品国家安全标准限值。因此,在利用生物质炭修复重金属污染土壤时,特别是农田土壤,应在充分考虑土壤性质、农作物类型、重金属和生物质炭种类的基...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号