共查询到20条相似文献,搜索用时 15 毫秒
1.
金属-有机框架(MOFs)材料具有易制备、易修饰、高孔隙率、大比表面积、多化学活性位点、可调孔径大小等优点,已被广泛应用于能源储存与转化相关领域.本文介绍了MOFs直接作为锂离子电池负极材料的研究现状,同时重点综述了MOFs衍生材料(多孔碳、过渡金属氧化物、金属氧化物/碳质复合材料、金属/金属氧化物)的制备方法及其在锂离子电池负极中的应用,提出了此类材料作为锂离子电池负极材料需要重视的问题和面临的挑战.通过高温煅烧或者可控的化学反应等方法,MOFs材料可以简单方便地转化为传统的无机功能材料(金属化合物或碳).这些材料具有结构可调和化学成分多样化等优点,可以进一步提升电化学性能.最后,展望例如MOFs衍生材料在电化学储能和转换的发展方向和应用前景,为定向合成此类材料在电化学方面的应用提供有意义的实验基础和理论价值. 相似文献
2.
3.
4.
吴雪敏;迪力夏提·木合塔尔;张朵朵;卢学毅;卢侠 《科学通报》2024,(20):3024-3046
日益增长的清洁可持续能源取代传统化石燃料的需求,推动了二次电池的发展.然而,商业化成功的锂离子电池仍面临成本和安全方面的重大挑战,因此迫切需要寻找具有更高能量密度和更好安全性的二次电池.从材料角度,层状过渡金属氧化物由于其高理论容量、高工作电压和低制造成本而被认为是有前途的高能量密度正极材料.然而,由于存在电化学稳定性问题,层状过渡金属氧化物仍未充分发挥其应用的潜力.本文首先综述了锂离子电池具有代表性的高能量密度正极材料,重点讨论了钴酸锂正极材料的发展历程和结构特性,介绍了其工作机理和失效机制,总结并分析了相应的改性策略及其在增强电化学稳定性方面的表现;然后介绍了钴酸锂高能量密度正极材料的工程应用现状和改进措施;最后展望了高能量密度可充电电池的发展前景. 相似文献
5.
薄膜锂离子电池作为各种微电子系统的首选电源被广泛研究.本文系统综述了近年来锂离子电池Sn基薄膜负极材料的研究进展,着重介绍纯Sn薄膜、Sn基合金和Sn基氧化物薄膜的制备与性能.纯Sn薄膜具有高的可逆容量,但其嵌锂/脱锂过程的巨大体积变化导致循环性能很差,而且纯Sn薄膜的制备方法及其与电解液的界面特性对电极容量衰减有很大的影响.将Sn与非活性过渡金属复合,虽可有效提高电极循环性能,但同时带来容量的损失;Sn与活性成分形成的纳米晶多相复合薄膜负极可在保持高容量的同时,获得良好的循环性能.与纯Sn薄膜负极相比,Sn基氧化物薄膜存在纳米Sn相原位生成的过程,因此具有较好的循环稳定性,但其首次不可逆容量大.已有的研究进展充分说明,微纳组织调控能够显著改善上述薄膜电极的性能.分析和总结现有Sn基薄膜负极材料的微观结构和性能之间关系的研究进展,多相多尺度结构调控应是进一步提高Sn基合金薄膜负极的容量和循环稳定性的重要途径. 相似文献
6.
富锂锰基固溶体xLi[Li1/3Mn2/3]O2.(1–x)LiMO2具有超过目前所用正极材料1倍的高比容量,是很有潜力的下一代锂离子电池用正极材料,但是其他电化学性能,特别是功率特性尚不能满足应用要求.从机理研究、合成工艺和性能改进3方面综述了富锂锰基固溶体型锂离子电池正极材料xLi[Li1/3Mn2/3]O2.(1–x)LiMO2的研究现状,提出了下一步的研究思路和方向. 相似文献
7.
8.
《科学通报》2018,(32)
锂离子电池作为新一代储能装置,已经在生产和生活中得到了广泛应用.多酸有着多电子转移、化学结构稳定、氧化还原性可逆等诸多优点,具有作为电池电极材料的良好潜力.但易溶于电解液、导电性差且易发生团聚等问题阻碍了多酸用于电池电极材料的应用研究.本工作为解决上述问题,充分利用磷钼酸良好的水溶性、优异的氧化还原性和独特的酸性,通过简单的一锅法,在温和的条件下制备了磷钼酸/聚吡咯/石墨烯前驱体(PMo12/PPy/RGO,简称PCG),并通过高温氨化处理制备了新型氮化钼基复合材料(NPC@Mo2N/NPRGO),磷钼酸、聚吡咯在提供金属源和碳源的同时也提供了P,N杂原子掺杂到多孔碳和石墨烯中,该材料作为锂离子电池负极材料表现出较好的循环性能和倍率性能.在电流密度为100m A/g时,NPC@Mo2N/NPRGO的首周放电比容量可以达到1446 mAh/g,循环200周后仍然可以达到771 mAh/g.在电流密度为100, 200, 500, 1000, 2000 mA/g时,循环比容量分别为797,725,630,545,460m Ah/g.尤其是在大电流密度(1000m A/g)循环300周后容量仍能达到554mAh/g. 相似文献
9.
《科学通报》2018,(33)
正极材料的实际比容量一般都低于理论比容量,实际容量是直接影响电池能量密度的关键因素之一,不同电极活性材料的实际比容量/理论比容量的差别很大,差距主要来自充电前后的实际脱锂系数大小.通过大数据的整理,本文收集了层状LiMO_2(M=Ni和Co),尖晶石LiMn_2O_4和LiMPO_4(M=Fe,Mn和Ni)等20种典型正极材料的晶体结构和实际容量实验参数.利用第一性原理计算方法,得到了这些典型体系母体的价带和导带之间的能隙值.通过比较脱锂前后两种结构的能隙,确定了能隙比值与实际脱锂系数的关系,结果表明,脱锂前后结构的能隙越接近,正极材料的实际脱锂系数就越大,相对的实际容量也就越大.因此,通过比较能隙大小,可以了解影响锂离子电池活性材料的实际容量的本质因素. 相似文献
10.
11.
聚合物固态电解质是解决目前商用锂离子电池安全问题的一个有效途径,其中,聚环氧乙烷(PEO)最早被提出用作聚合物电解质.因其具有良好的机械性能、电化学稳定性与热稳定性,在几十年的聚合物固态电解质的研究过程中一直是被关注的热点,但常温下低的离子电导率限制了其实际应用.本文从PEO基聚合物电解质所存在的问题出发,分别介绍了几种提高离子电导率的方法,对其研究进展进行了综述,最后总结了PEO基聚合物电解质在锂离子电池中的应用,并对未来的发展方向进行了展望. 相似文献
12.
多级中空纳米纤维材料具有结构可控、成分可调的优点,在二次电池电极材料领域应用广泛.在结构方面:多级中空结构可以有效缓冲电极材料在电化学反应离子嵌/脱过程中的体积变化,阻止电极材料粉碎、脱落,增加电解液和电极材料的有效接触面积,缩短离子/电子传输路径;在成分方面:可以实现不同特性材料的合理耦合,提升电极材料电导率,加速氧化还原反应动力学.多级中空纳米纤维结构和成分的协同增强作用在提升二次电池容量、倍率、循环性能方面效果显著.本文归纳了现阶段制备多级中空结构纳米纤维的几类方法,包括单针头静电纺丝、多流体静电纺丝和其他合成方法(模板法、水热法、自组装法等).随后,总结了不同结构、成分的纤维在二次电池(如锂、钠、钾离子电池,锂/钠-硫电池,锂金属-空气电池,超级电容器等)中的应用进展.最后,探讨了多级中空结构纳米纤维材料在电化学储能领域的应用潜力. 相似文献
13.
14.
15.
基于锂离子电池在循环过程中产生的体积效应严重影响整个电池的循环稳定性的问题,本研究设计了一种利用聚吡咯包覆金属有机框架的简单方法,来合成蛋黄壳结构的碳包覆氧化锰材料,并用于锂离子电池的负极材料.所制备的碳包覆氧化锰纳米颗粒在锂离子电池充放电过程中表现出良好的比容量,在0.1, 0.5和2 A g~(–1)的电流密度下分别表现出723, 651, 374 m Ah g~(–1)的比容量.在具有优异的倍率性能的同时,该材料还具有优异的稳定性.在上述3个电流密度下,该材料循环200圈后容量没有明显的衰减.该纳米结构MnO_x的制备方法和电化学理解也可以推广到其他过渡金属氧化物,最终实现高性能的锂离子电池. 相似文献
16.
全固态锂离子电池是以固态电解质取代液体电解质的锂离子电池、它有望从根本上解决电池的安全性问题,如能实现其大容量化和长寿命,将在电动汽车和规模化储能领域具有非常广阔的应用前景.由于固态电解质比液态电解质有更宽的工作电位窗口,因此可以在全固态电池中使用具有较高电压平台的正极材料,通过提升电池的工作电压以获得高能量密度,从而实现大容量化.锂离子电池正极材料尖晶石LiNi0.5Mn1.5O4,三元层状材料和富锂锰基正极材料都具有较高的电压平台,是全固态锂离子电池可选用的理想正极材料.本文介绍了尖晶石LiNi0.5Mn1.5O4,三元层状材料和富锂锰基正极材料的结构和性能特点,重点阐述了与改善材料的电导率和界面性质相关的的研究,改善其作为全固态锂离子电池正极材料与固态电解质的匹配性能,从而全面提升全固态电池的性能.总结了3种材料在全固态锂离子电池中应用存在的问题,提出未来的技术攻关方向,并对其在全固态电池中的应用前景进行了展望. 相似文献
17.
18.