共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
目标跟踪是计算机视觉研究领域中一个最基本的问题.为解决在复杂场景下目标跟踪效果不佳的问题,作者搭建了一个基于非负稀疏的协作模型,该模型将非负稀疏表示的产生式模型与全局模板判别式模型相结合,并提出了基于非负稀疏协作模型的目标跟踪算法.首先对每一帧图像使用粒子滤波得到若干个候选框,然后再利用非负稀疏协作模型对每一个候选跟踪框进行评分,根据得分最高判为是跟踪目标的候选框.在多个视频序列上的实验结果表明,所提出的方法可以有效地提高目标跟踪的性能. 相似文献
3.
为提高多种光照条件下交通卡口视频中车脸识别的准确性,提出了一种基于改进非负矩阵分解的车脸识别算法.对采集图像进行预处理,获得车脸图像与车牌信息.基于特定光照条件,自适应提取车脸图像的初始特征.针对车脸图像中像素位置的重要性差异,建立了加权稀疏约束非负矩阵分解的特征降维方法.通过判断特征相似性与车牌信息一致性,确定车辆是否合法.实验结果表明所提算法具有较好的识别性能,真实接受率与错误拒绝率分别可达到0.9875与0.04,并满足实时性要求. 相似文献
4.
基于图的标签传播算法是半监督学习中的研究热点之一,其性能很大程度依赖于图的质量.为了应对这一问题,文章提出了基于聚类的标签集成传播算法.该算法对样本集进行多次聚类,在每次聚类产生的簇中,利用互补熵度量簇内样本标签的混乱程度,并在混乱程度较小的簇中进行标签传播,当一个未标记样本获得某个标签的次数与聚类次数的比值大于50%... 相似文献
5.
基于图正则化非负矩阵分解算法(GNMF),提出一种基于凸光滑的L3/2范数正则化图非负矩阵分解算法.该算法用非负矩阵分解算法对数据进行低维非负分解时,根据流形学习的图框架理论,构建邻接矩阵保持数据局部几何结构,并对数据的低维表示特征进行凸光滑的L3/2范数稀疏性约束,在给出算法更新迭代规则的同时,从理论上证明了所给算法的收敛性.通过人脸数据库ORL、手写体数据库USPS和图像库COIL20的仿真实验表明,相对于非负矩阵分解算法及其基于稀疏表示的改进算法,所给算法均具有更高的聚类精度. 相似文献
6.
近年来由于其表示的有效性,基于表示的分类方法,例如稀疏表示分类器(SRC)或者协同表示分类器(CRC)被广泛的应用于各种各样的识别任务.但是,SRC或者CRC的性能严重依赖于每类带标签训练样本的个数,当每类带标签的训练样本不够充分,SRC或者CRC的识别性能将会显著地下降.为了解决这个问题,文章[34]把协同表示技术引入到半监督学习方法中,提出了一种基于协同表示的标签传播算法,有效的利用了大量未标记样本的信息来进行标签传播.受此启发,把这种标签传播算法与正交鉴别分析算法相结合,提出了一种基于协同表示标签传播的半监督正交鉴别分析算法,目的是为了学习一个更好的鉴别子空间.不同于传统的半监督降维方法,所提算法首先利用这种标签传播算法将部分有标签数据的标签信息传递给不带标签的数据,之后利用传播后获得的全体软标签信息构造离散度矩阵实现鉴别分析,其次对鉴别投影施加正交约束,采用一种更加有效快速的迹比优化算法进行鉴别分析.大量的实验结果验证了所提算法的有效性.尤其在只存有少量标签样本的情况下,算法仍能保持良好的分类性能. 相似文献
7.
对欠定混叠盲源分离问题,论文针对于源信号的稀疏程度不同,首先引入了向量k-阶稀疏的概念。然后在满足欠定混叠盲分离问题可解的情况下,讨论了源信号向量是m-1阶稀疏的情况下的混叠矩阵的辨识问题,并提出了一种新的基于超平面聚类算法来估计欠定混叠矩阵。该算法不仅对源信号的稀疏性要求放宽了条件,而且在精确估计出混叠矩阵的同时估计出了源信号的数目。经数值实验仿真表明了算法的有效性。 相似文献
8.
基于人脸图像的年龄自动估计已经成为当前人脸识别领域的一个重要研究方向。首先通过非负矩阵分解(non-negative matrix factorization,NMF)算法对基矩阵或系数矩阵进行稀疏性约束,用形成的更具有局部表达能力的子空间对人脸图像数据进行表示。然后使用径向基函数神经网络进行训练和测试,提取包含在大多数人脸图像上的年龄信息来进行年龄估计。实验结果表明,具有稀疏性约束的非负矩阵分解算法对年龄估计问题具有良好的应用效果。 相似文献
9.
提出了一种非负矩阵分解的快速稀疏算法,该算法有利于处理高维小样本数据.在非负矩阵分解的过程中,通过代数变换,将原高维n×m阶的非负矩阵分解转化成低维m×m阶非负矩阵分解,大大提高了分解速度.在目标函数中加入了约束稀松度的项,通过控制稀松度,提高分解得到的潜在语义信息,改进文档集的话题划分,并能快速提取主题相关的语句生成文摘. 相似文献
10.
针对不同视角的行人样本具有较大的类内差异性,造成多视角行人识别错误率较高的问题,提出一种基于非负矩阵分解最小二乘的多视角行人分类算法.采用非负矩阵分解的方法对多视角的行人样本图像进行子空间分解,提取基向量;引入协同表示的方法并在最小二乘约束下,对子空间进行稀疏表示获得稀疏分解系数;利用近邻子空间方法对分解系数进行分类.基于自行构建的多视角行人数据库进行对比实验,结果表明该算法的准确性和有效性优于其他方法. 相似文献
11.
在源信号在非充分稀疏条件下,提出了一种改进的两步法欠定盲源分离算法.与现有的大多数稀疏分量分析算法法都是假设源信号是充分稀疏不同,该算法放宽了源信号的稀疏性.与此同时,该算法能够估计出聚类空间的个数,能够克服源信号个数未知的情况.模糊划分矩阵的应用更加有利于源信号的分离.仿真结果表明了该算法的有效性. 相似文献
12.
一种面向稀疏表示的最大间隔字典学习算法 总被引:1,自引:0,他引:1
近年来,基于稀疏表示的分类技术(SRC)在图像分类和目标识别中取得了巨大的成功。在该框架中,过完备基的学习和多类分类器(通常为支持向量机SVM)的训练是最关键的两个步骤。但在目前的许多方法中,这两个模块的构建过程都是相互独立的。该文针对以上问题,提出了一种用于稀疏表示的最大间隔字典学习算法,将两类SVM分类器的损失函数项的平方及分类间隔作为正则项与稀疏字典的学习过程进行了整合,并提出相应的坐标轮换优化算法对目标函数进行优化,实现了字典和分类器的同步学习。所提出的框架能够增强多类分类器中两类分类器的推广性能,并减少多类分类器的误差界。为了对所提出算法的性能进行评价,在2个常用标准库上进行了分类实验。结果表明,所提出的算法的与SRC相比识别率提升均超过3%。 相似文献
13.
14.
为帮助学习者从大量在线学资源中找到适合自身个性化的学习资源及顺序集合,提出一种基于有向边方向权值的标签传播算法(LPADEW)用于发现适合特定学习者并属于同一学习周期的微学习单元序列簇群。该算法对标签传播算法进行两个改进:根据单元节点的利用度确定标签的更新顺序,降低在节点更新顺序上的随机性;利用当前单元节点的前置邻居和后置邻居的有向边权累加值进行标签更新,并将标签权重引入标签更新策略,既可降低标签更新的随机性,也可避免形成巨型簇群。实验结果表明,LPADEW算法在微学习真实数据集和人工数据集中均取得了较好的结果。 相似文献
15.
一种结合稀疏表示和切比雪夫矩的人脸识别算法 总被引:1,自引:0,他引:1
在基于稀疏表示的人脸识别算法的基础上,利用切比雪夫矩在图像重建及抗噪声方面的良好性能,提出了一种结合稀疏表示和切比雪夫矩的人脸识别算法,对有无加性噪声干扰的人脸图像进行识别.给出了详细的数学推导过程和算法实现步骤,并通过实验对算法进行了验证.针对扩展的Yale B人脸库和AR人脸库的识别结果表明,当特征空间维数为496时,该算法在不同光照条件和不同表情条件下的识别率分别为98.33%和88.72%,在添加椒盐噪声后像素破坏比例小于60%的条件下识别率为100%.与基于随机脸的最近邻分类法、最近子空间分类法及传统SRC算法相比,该算法在抵抗图像的细节信息变化方面具有更好的鲁棒性. 相似文献
16.
人脸识别技术是目前最具发展潜力的生物特征识别技术之一。眼镜、围巾等遮挡物的存在对人脸识别系统的识别率影响很大,为了提高有遮挡的正面人脸图像的识别率,文章提出了基于稀疏表达分类的去除遮挡的方法。该方法对于有遮挡的人脸图像先求出其在无遮挡人脸图像训练集上的稀疏系数,再根据求得的稀疏系数进行恢复重建,得到去遮挡的人脸图像。实验表明该方法能有效地去除遮挡和提高识别率。 相似文献
17.
由于词语的多语义问题和传统的文本表示与聚类过程相互独立的问题,导致文本聚类准确率较低。针对上述问题提出一种基于多语义文本表示的自适应模糊C-均值(Multi-semanticSrepresentationSbasedSadaptiveSfuzzySC-means, MSR-AFCM)聚类算法。通过将词语软聚类划分成多个词簇构建多个语义空间,将语义空间个数作为文本初始聚类数目,利用词语的语义隶属度计算每个文本属于文本空间的语义隶属度,并以此为对隶属度进行初始化。在算法运行过程中,根据更新的文本语义隶属度和文本分布状况,逐步剔除冗余的文本空间,以达到优化聚类数目的目标。实验结果表明,MSR-AFCM算法相较于传统的聚类算法有更高的准确率和兰德系数,验证了算法的有效性。 相似文献
18.
《云南民族大学学报(自然科学版)》2017,(4):317-321
发现复杂网络中的结构和特征是社区发现的一个重要任务.标签传播算法(LPA)因具有接近线性的时间复杂度,常用于快速处理大规模的社区网络.针对该算法在节点的更新顺序和标签选择策略上存在很大的随机性,严重破坏了算法的稳定性和社区划分结果的准确性.提出了一种基于节点H指数的标签传播算法,即利用节点的综合影响力改进标签传播算法的节点更新顺序和标签选择策略.实验研究表明,改进算法有效地降低了算法的随机性,提高了社区划分的稳定性和准确性. 相似文献
19.
红外行人检测在夜间智能视频监控,车辆安全驾驶等领域有重要应用。为了解决红外图像特征降维后空间结构信息丢失的问题,提出一种基于广义二维主分量分析(principal component analysis,PCA)和稀疏表示的红外图像行人目标检测算法。该算法主要由2个阶段组成:第1阶段利用广义二维主分量分析方法提取图像的二维主特征分量,并由此构造行人目标的超完备特征字典;第2阶段采用滑动窗口的方法得到图像中局部子图,然后利用基追踪算法求解每个局部子图的稀疏表示系数向量,最后定义一个函数度量每个子图存在行人目标的可能性,并设置相邻标记框的最小距离得到整幅图像最终的检测结果。实验结果表明,该方法能够有效地检测红外图像中的行人目标,具有较好的检测效果。 相似文献
20.
基于信号稀疏表示理论,提出一种离散系数FIR滤波器设计方法。在加权最小二乘准则下,首先将原始设计问题转换为半定规划问题。为了有效控制硬件实现开销,借鉴信号稀疏表示理论,在目标函数中引入加权项,并在此基础之上,利用随机采样技术获得最终设计结果。仿真结果表明该方法所设计的离散系数滤波器,在控制加法器个数的同时,能有效减少因系数量化所导致的性能损失。与传统方法相比,在阶数较高的情况下,该方法依然能取得较好效果。 相似文献