共查询到19条相似文献,搜索用时 46 毫秒
1.
基于模糊 c - 均值算法和遗传算法的新聚类方法 总被引:2,自引:1,他引:1
为了得到最佳聚类数和相应的每一类中的样本文中首先介绍了一种新聚类方法用该方法构造了一个既考虑类与类之间的分散程度、又考虑同一类紧凑程度的目标评价函数;再运用模糊 c-均值算法(FCM)进行迭代求得每一类的中心和隶属度值;然后运用遗传算法搜索全局极值点;最后运用该算法对我国全要素生产力进行了模糊分类. 相似文献
2.
一种新的模糊C均值聚类算法 总被引:1,自引:1,他引:0
传统的模糊C均值聚类算法及其变型在聚类过程中都假设所有的属性对聚类贡献相同,所以很难发现隐藏在部分属性中的类结构,也难以识别出重要属性.在实际应用中,噪声属性较为常见,并且会影响正常的聚类过程.鉴于以上原因,提出了一种新的基于属性加权的模糊C均值聚类算法,通过对人工数据和实际数据的聚类测试结果,证实了该算法的有效性. 相似文献
3.
刘进 《广西师范学院学报(自然科学版)》2010,27(4)
为克服核模糊属性c-均值聚类算法易陷入局部最优解的缺点,提出一种新的基于粒子群优化的核模糊属性c-均值聚类算法.该算法根据核模糊属性c-均值聚类准则设计适应度函数,利用粒子群优化算法对聚类中心进行优化,在粒子迭代进化过程中采用动态调整学习因子,提高算法的优化性能.实验表明,本文算法优于单一使用核模糊属性c-均值聚类算法和基于粒子群优化的核模糊c-均值聚类算法,也优于目前常见的典型聚类算法. 相似文献
4.
文中应用逐步聚类和模糊c—均值聚类于山西油松林分布区划分的比较研究,结果表明逐步聚类和模糊c—均值聚类具有很高的相似性。 相似文献
5.
基于模糊c—线性簇聚类算法的Kohonen特征映射 总被引:4,自引:0,他引:4
提出了一种基于模糊c-线性簇聚类算法的Kohonen特征映射算法,这种特征映射克服了Kohonen网存在的一些缺点,对某些识别问题,其计算效率非常高。 相似文献
6.
先通过数据约简技术在不损失数据聚类结构的前提下对数据进行精简, 利用提出的近似模糊c均值聚类算法对精简后数据进行划分得到初始化中心, 再在该中心基础上通过模糊c均值聚类算法结合聚类有效性指标, 实现对数据的无监督聚类, 改进了无监督模糊c均值聚类算法聚类性能过分依赖初始化中心及大数据集下计算效率不理想的问题. 与已有算法的对比实验表明, 所提出的算法具有更高的求解精度与计算效率, 得到的聚类个数更合理. 相似文献
7.
讨论模糊C均值聚类算法在决策表条件属性对决策属性的相容程度的指导下对粗集理论中的连续属性进行离散化的一种新算法。该算法充分考虑属性之间的相关性,将所有连续属性转化为矩阵同时处理,能明显提高传统动态层次聚类算法离散化过程的速度。算法测试结果表明,新算法能较好地保留有效属性,提高离散化精度。 相似文献
8.
基于对属性均值聚类算法和求解全局优化问题的方法的分析,提出了基于模拟退火算法的属性均值聚类算法。数值计算表明该算法是一个具有全局最优解的聚类方法。 相似文献
9.
为了避免陷入梯度法局部极值以提升模糊聚类算法聚类性能,提出PSO高斯诱导核模糊c均值聚类算法(PSO Gauss-induced kernel fuzzy c-means clustering algorithm, PSO-GIKFCM)。首先将高斯核函数应用于模糊c聚类算法(FCM)目标函数,得到高斯核模糊聚类目标函数。然后在高斯核特征空间和输入空间利用梯度法得到两空间聚类中心,将特征空间聚类中心与样本的内积核矩阵代入输入空间聚类中心,从而得到高斯诱导核的聚类中心。最后在解空间利用粒子群算法(PSO)对模糊隶属度进行寻优估计,并结合目标函数和聚类中心构成PSO-GIKFCM参数估计迭代流程。PSO-GIKFCM算法基于粒子群算法保证其收敛性,聚类中心仅为模糊隶属度的函数,PSO生物进化算法在解空间全局寻找优解,且将模糊指标扩展为大于0的情况。通过仿真实验验证了所提出算法的有效性。 相似文献
10.
模糊c均值聚类在交通流高峰期确定中的应用 总被引:1,自引:0,他引:1
交通流高峰期是交通规划、交通控制中一个非常重要的概念.目前高峰期一般是凭经验人为确定的.文章利用模糊c均值聚类方法对交通流高峰期的确定问题进行研究.首先对模糊c均值聚类算法进行简要介绍,然后利用该算法对某城间高速公路交通流数据进行聚类分析,分别确定了该高速公路正、反向交通流的高峰期.结果表明,该算法聚类结果与经验交通流高峰期基本一致. 相似文献
11.
12.
提出了一种在数据预处理后利用模糊C-均值法进行飞机动态使用评价的聚类分析方法,论述了该方法的聚类过程,给出了实例并对其结果进行了分析,结果表明该方法科学合理,切合实际。 相似文献
13.
基于模糊聚类理论的入侵检测数据分析 总被引:5,自引:0,他引:5
入侵检测系统是网络和信息安全构架的重要组成部分,主要用于区分系统的正常活动和可疑及入侵模式,但是它所面临的挑战是如何有效的检测网络入侵行为以降低误报率和漏报率.基于已有入侵检测方法的不足提出利用模糊C-均值聚类方法对入侵检测数据进行分析,从而发现异常的网络行为模式.通过对CUP99数据集的检测试验表明该方法不但可行而且准确性及效率较高. 相似文献
14.
一种基于遗传算法的模糊聚类 总被引:21,自引:0,他引:21
对模糊c均值聚类算法(FCM算法)进行了讨论,说明FCM算法一般得不到全局最优分类,因此结合FCM算法提出了用遗传算法进行寻优求解,从而将遗传算法用于模糊聚类分析,最后的实例表明,遗传算法在处理多样本、多属性、多类别问题时,是一种有效的方法。 相似文献
15.
A dynamic fuzzy clustering method is presented based on the genetic algorithm. By calculating the fuzzy dissimilarity between samples the essential associations among samples are modeled factually. The fuzzy dissimilarity between two samples is mapped into their Euclidean distance, that is, the high dimensional samples are mapped into the two-dimensional plane. The mapping is optimized globally by the genetic algorithm, which adjusts the coordinates of each sample, and thus the Euclidean distance, to approximate to the fuzzy dissimilarity between samples gradually. A key advantage of the proposed method is that the clustering is independent of the space distribution of input samples, which improves the flexibility and visualization. This method possesses characteristics of a faster convergence rate and more exact clustering than some typical clustering algorithms. Simulated experiments show the feasibility and availability of the proposed method. 相似文献
16.
Introduction Fuzzy clustering plays an important role in pattern rec ognition, image processing, and data analysis. In fuzzy clustering, every point is assigned a membership to represent the degree of belonging to a certain class The fuzzy c-means (FCM) m… 相似文献
17.
利用一种新的距离测度将Dave的广义噪声聚类(GNC)扩展成非欧氏距离的广义噪声聚类(NGNC).模糊C-均值聚类(FCM)和广义噪声聚类都是基于欧氏距离的模型,与它们不同之处在于NGNC是基于非欧氏距离的模型,建立在鲁棒统计观点和势函数基础上,这种非欧氏距离比欧氏距离更加鲁棒,因此NGNC算法比GNC算法更加鲁棒.并且,建立在新的距离测度上的NGNC在处理噪声和野值方面比GNC和FCM更好.实验结果表明了NGNC的良好特性. 相似文献
18.
医学图像分割在医学图像处理,尤其是临床诊断的MRI图像分析中起着重要作用,提出一种基于核模糊C均值聚类算法(KFCM)的MRI脑图像分割,讨论KFCM算法中隶属度m参数和聚类数目k的选取对图像分割的效果影响,通过仿真实验表明,对于MRI脑图像隶属度函数值在2≤m≤11整数时,图像能取得较好效果,对于聚类数目k选取不易超过8. 相似文献