首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
文中应用逐步聚类和模糊c-均值聚类于山西油松林分布区划分的比较研究,结果表明逐步聚类和模糊c-均值聚类具有很高的相似性。  相似文献   

2.
传统的模糊C均值聚类算法及其变型在聚类过程中都假设所有的属性对聚类贡献相同,所以很难发现隐藏在部分属性中的类结构,也难以识别出重要属性.在实际应用中,噪声属性较为常见,并且会影响正常的聚类过程.鉴于以上原因,提出了一种新的基于属性加权的模糊C均值聚类算法,通过对人工数据和实际数据的聚类测试结果,证实了该算法的有效性.  相似文献   

3.
为克服核模糊属性c-均值聚类算法易陷入局部最优解的缺点,提出一种新的基于粒子群优化的核模糊属性c-均值聚类算法.该算法根据核模糊属性c-均值聚类准则设计适应度函数,利用粒子群优化算法对聚类中心进行优化,在粒子迭代进化过程中采用动态调整学习因子,提高算法的优化性能.实验表明,本文算法优于单一使用核模糊属性c-均值聚类算法和基于粒子群优化的核模糊c-均值聚类算法,也优于目前常见的典型聚类算法.  相似文献   

4.
基于模糊c—线性簇聚类算法的Kohonen特征映射   总被引:4,自引:0,他引:4  
提出了一种基于模糊c-线性簇聚类算法的Kohonen特征映射算法,这种特征映射克服了Kohonen网存在的一些缺点,对某些识别问题,其计算效率非常高。  相似文献   

5.
基于模糊c均值聚类的多模型软测量建模   总被引:25,自引:2,他引:25  
根据几个模型相加可提高模型的预测精度及鲁棒性的思想,提出了一种非线性软测量建模的新方法。即先用模糊c均值聚类将训练集分成具有不同聚类中心的子集,每一子集用RBF网络或部分最小二乘法进行训练得出子模型,再用模糊聚类后产生的隶属度将各子模型的输出加权求和得到最后结果,此算法通过一个复杂非线性函数的仿真建模和一个分馏塔柴油倾点软测量建模的工业实例研究,结果表明比其它算法具有更好的泛化结果和预报精度,具有  相似文献   

6.
先通过数据约简技术在不损失数据聚类结构的前提下对数据进行精简, 利用提出的近似模糊c均值聚类算法对精简后数据进行划分得到初始化中心, 再在该中心基础上通过模糊c均值聚类算法结合聚类有效性指标, 实现对数据的无监督聚类, 改进了无监督模糊c均值聚类算法聚类性能过分依赖初始化中心及大数据集下计算效率不理想的问题. 与已有算法的对比实验表明, 所提出的算法具有更高的求解精度与计算效率, 得到的聚类个数更合理.  相似文献   

7.
讨论模糊C均值聚类算法在决策表条件属性对决策属性的相容程度的指导下对粗集理论中的连续属性进行离散化的一种新算法。该算法充分考虑属性之间的相关性,将所有连续属性转化为矩阵同时处理,能明显提高传统动态层次聚类算法离散化过程的速度。算法测试结果表明,新算法能较好地保留有效属性,提高离散化精度。  相似文献   

8.
黄力明 《镇江高专学报》2000,13(4):69-71,85
基于对属性均值聚类算法和求解全局优化问题的方法的分析,提出了基于模拟退火算法的属性均值聚类算法。数值计算表明该算法是一个具有全局最优解的聚类方法。  相似文献   

9.
模糊c均值聚类在交通流高峰期确定中的应用   总被引:1,自引:0,他引:1  
交通流高峰期是交通规划、交通控制中一个非常重要的概念.目前高峰期一般是凭经验人为确定的.文章利用模糊c均值聚类方法对交通流高峰期的确定问题进行研究.首先对模糊c均值聚类算法进行简要介绍,然后利用该算法对某城间高速公路交通流数据进行聚类分析,分别确定了该高速公路正、反向交通流的高峰期.结果表明,该算法聚类结果与经验交通流高峰期基本一致.  相似文献   

10.
为了避免陷入梯度法局部极值以提升模糊聚类算法聚类性能,提出PSO高斯诱导核模糊c均值聚类算法(PSO Gauss-induced kernel fuzzy c-means clustering algorithm, PSO-GIKFCM)。首先将高斯核函数应用于模糊c聚类算法(FCM)目标函数,得到高斯核模糊聚类目标函数。然后在高斯核特征空间和输入空间利用梯度法得到两空间聚类中心,将特征空间聚类中心与样本的内积核矩阵代入输入空间聚类中心,从而得到高斯诱导核的聚类中心。最后在解空间利用粒子群算法(PSO)对模糊隶属度进行寻优估计,并结合目标函数和聚类中心构成PSO-GIKFCM参数估计迭代流程。PSO-GIKFCM算法基于粒子群算法保证其收敛性,聚类中心仅为模糊隶属度的函数,PSO生物进化算法在解空间全局寻找优解,且将模糊指标扩展为大于0的情况。通过仿真实验验证了所提出算法的有效性。  相似文献   

11.
区间数据的并行模糊聚类算法   总被引:7,自引:0,他引:7  
研究了对区间数据进行聚类的模糊聚类算法;介绍和分析了模糊c-均值算法的基本思想及实现步骤;定义了区间数据的距离和四则运算,并推广模糊c-均值算法对区间数据进行聚类.在此基础上,讨论了对区间数据进行聚类的并行模糊c-均值算法.在分布式互连的PC/工作站环境下进行性能分析,结果表明并行的模糊c-均值算法具有好的可扩展性、规模增长性和加速比性能.  相似文献   

12.
一种基于遗传算法的模糊聚类   总被引:21,自引:0,他引:21  
对模糊c均值聚类算法(FCM算法)进行了讨论,说明FCM算法一般得不到全局最优分类,因此结合FCM算法提出了用遗传算法进行寻优求解,从而将遗传算法用于模糊聚类分析,最后的实例表明,遗传算法在处理多样本、多属性、多类别问题时,是一种有效的方法。  相似文献   

13.
A dynamic fuzzy clustering method is presented based on the genetic algorithm. By calculating the fuzzy dissimilarity between samples the essential associations among samples are modeled factually. The fuzzy dissimilarity between two samples is mapped into their Euclidean distance, that is, the high dimensional samples are mapped into the two-dimensional plane. The mapping is optimized globally by the genetic algorithm, which adjusts the coordinates of each sample, and thus the Euclidean distance, to approximate to the fuzzy dissimilarity between samples gradually. A key advantage of the proposed method is that the clustering is independent of the space distribution of input samples, which improves the flexibility and visualization. This method possesses characteristics of a faster convergence rate and more exact clustering than some typical clustering algorithms. Simulated experiments show the feasibility and availability of the proposed method.  相似文献   

14.
Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy,because it is sensitive to the circumstances,a fuzzy c-means (FCM) clustering algorithm is applied to improve it.Thus,a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper.In KTFW algorithm,k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates.The right clusters are chosen according to rules,so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights.RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy.Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM.  相似文献   

15.
一种广义加权模糊聚类算法   总被引:2,自引:0,他引:2  
提出了一种广义的加权模糊聚类新算法来处理具有不同特征贡献和不同数据分布的混合属性数据.分别利用样本概率密度思想和ReliefF算法为每一个样本和每一维特征分配权值,通过样本和特征的加权,将模糊c均值算法、模糊c-modes算法、模糊c-原型算法以及样本加权聚类算法统一为一个通用的框架.不同测试数据集的实验结果证明,这种广义的模糊聚类新算法对于处理不同分布以及具有不同特征贡献的大数据集是相当有效的.  相似文献   

16.
一种改进的模糊聚类算法   总被引:10,自引:0,他引:10  
针对现有聚类算法在参数输入、停机条件等方面存在诸多人为控制因素的问题,采用信息熵理论使聚类标准客观化,同时结合模糊聚类的思想,以隶属度作为信息熵计算的基础,并采用谱系的方法确定聚类数目,从而改进模糊聚类算法.研究表明,提出的基于信息熵的算法能够比较客观、科学地反映实际聚类情况.  相似文献   

17.
模糊k-prototypes聚类算法的一种改进算法   总被引:6,自引:1,他引:6  
模糊k-prototypes算法是当前聚类分析中最有效算法之一.简述了模糊k-prototypes算法的发展进程和主要性质;并在此基础上.指出它在处理数值型和分类型混合数据时的不足,进而提出一种改进算法;最后,将算法应用到英语借词之中,给出计算结果.结果表明,改进算法具有较好的稳定性和较高的精确度.  相似文献   

18.
针对目前缺失数据填充算法精度低、运行效率低、内存占用率大的特点,提出一种新的不同类别非完整大数据中缺失数据填充算法。通过2个定理阐述了缺失数据填充算法的原理,给出信息熵的计算过程。输入根据数据集构建的决策表和不同类别非完整大数据中缺失数据的最大值、最小值、填充步长。求出其他类指标和某类指标的相关性,得到数据集,求出权重系数;计算初始数据库的信息熵,通过相关理论或经验对缺失数据区间下限进行设定;用一个很小的区间数据取代缺失数据,根据给出的步长不断扩大区间范围,绘制出每一步信息熵状况,将其与初始数据库信息熵相比,实现缺失数据填充。实验结果表明,所提算法精度高、运行效率高、内存占用率低。  相似文献   

19.
一种基于小波变换的模糊聚类算法及其应用   总被引:1,自引:0,他引:1  
为准确对输电线路故障性质、故障相等进行识别,提出一种基于小波能量比值的模糊C-均值聚类(FCM)算法,并研究了该算法在输电线路的永久性和瞬时性故障识别中应用的可行性.结合小波分析的时频分析能力、小波能量比值的特征提取能力和FCM的模式识别能力,建立一实际500kV输电线路的PSCAD模型,对单相故障产生时的暂态电流进行了聚类分析和识别.仿真结果表明:基于小波能量比值的FCM算法能较好地识别故障相与非故障相,且算法收敛速度快,识别结果准确.  相似文献   

20.
模糊c均值聚类算法(FCM)由于样本模糊隶属度归一性的约束,导致FCM算法对噪声数据敏感。提出松弛模糊C均值聚类算法(RFCM),RFCM算法在可能性c均值聚类算法(PCM)目标函数的基础上,放弃了FCM算法单个样本模糊隶属度归一化约束,转为n个样本模糊隶属度之和为n的约束,并利用粒子群算法对样本模糊隶属度进行优化估计,使得模糊指标可拓展为m>0的情况,同时采用梯度法得到RFCM算法聚类中心迭代公式。RFCM理论分析了算法对噪声数据抗噪的原理,解释了RFCM算法模糊指标m>0的合理性,讨论了RFCM算法的收敛性。基于gauss数据集和UCI数据集的仿真测试验证了所提出算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号