首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The source rupture process of the M S7.0 Lushan earthquake was here evaluated using 40 long-period P waveforms with even azimuth coverage of stations. Results reveal that the rupture process of the Lushan M S7.0 event to be simpler than that of the Wenchuan earthquake and also showed significant differences between the two rupture processes. The whole rupture process lasted 36 s and most of the moment was released within the first 13 s. The total released moment is 1.9×1019N m with M W=6.8. Rupture propagated upwards and bilaterally to both sides from the initial point, resulting in a large slip region of 40 km×30 km, with the maximum slip of 1.8 m, located above the initial point. No surface displacement was estimated around the epicenter, but displacement was observed about 20 km NE and SW directions of the epicenter. Both showed slips of less than 40 cm. The rupture suddenly stopped at 20 km NE of the initial point. This was consistent with the aftershock activity. This phenomenon indicates the existence of significant variation of the medium or tectonic structure, which may prevent the propagation of the rupture and aftershock activity. The earthquake risk of the left segment of Qianshan fault is worthy of attention.  相似文献   

2.
This paper presents the coseismic displacement and preseismic deformation fields of the Lushan M S7.0 earthquake that occurred on April 20, 2013. The results are based on GPS observations along the Longmenshan fault and within its vicinity. The coseismic displacement and preseismic GPS results indicate that in the strain release of this earthquake, the thrust rupture is dominant and the laevorotation movement is secondary. Furthermore, we infer that any possible the rupture does not reach the earth’s surface, and the seismogenic fault is most likely one fault to the east of the Guanxian-Anxian fault. Some detailed results are obtainable. (1) The southern segment of the Longmenshan fault is locked preceding the Lushan earthquake. After the Wenchuan earthquake, the strain accumulation rate in the southeast direction accelerates in the epicenter of the Lushan earthquake, and the angle between the principal compressional strain and the seismogenic fault indicates that a sinistral deformation background in the direction of the seismogenic fault precedes the Lushan earthquake. Therefore, it is evident that the Wenchuan M S8.0 earthquake accelerated the pregnancy of the Lushan earthquake. (2) The coseismic displacements reflected by GPS data are mainly located in a region that is 230 km (NW direction) × 100 km (SW direction), and coseismic displacements larger than 10 mm lie predominantly in a 100-km region (NW direction). (3) On a large scale, the coseismic displacement shows thrust characteristics, but the associated values are remarkably small in the near field (within 70 km) of the earthquake fault. Meanwhile, the thrust movement in this 70-km region does not correspond with the attenuation characteristics of the strain release, indicating that the rupture of this earthquake does not reach the earth’s surface. (4) The laevorotation movements are remarkable in the 50-km region, which is located in the hanging wall that is close to the earthquake fault, and the corresponding values in this case correlate with the attenuation characteristics of the strain release.  相似文献   

3.
Magnetotelluric measurements were carried out along two profiles across the middle and southwestern sections of the Longmenshan fault zone (LMSf) from 2009 to 2011, after the 2008 Wenchuan M W7.9 earthquake. The former profile crosses the Wenchuan event epicenter and the latter one crosses 2013 Lushan M S7.0 event epicenter. The data were analyzed using advanced processing techniques, including phase tensor and two-dimensional inversion methods, in order to obtain reliable 2-D profiles of the electrical structure in the vicinity of the two earthquakes. A comparison of the two profiles indicates both similarities and differences in the deep crustal structure of the LMSf. West of the southwestern section, a crustal high conductivity layer (HCL) is present at about 10 km depth below the Songpan-Garzê block; this is about 10 km shallower than that under the middle section of the LMSf. A high resistivity body (HRB) is observed beneath the southwestern section, extending from the near surface to the top of upper mantle. It has a smaller size than the HRB observed below the middle section. In the middle section, there is a local area of decreased resistivity within the HRB but there is absence of this area. The 2013 Lushan earthquake occurred close to the eastern boundary of HRB and the Shuangshi-Dachuan fault, of which the seismogenic context has both common and different features in comparison with the 2008 Wenchuan event. On a large scale, the 2013 Lushan earthquake is associated with the HCL and deformation in the crust including HCL of the eastern Tibetan Plateau. In order to assess seismic risk, it is important to consider both the stress state and the detailed crustal structure in different parts of the LMSf.  相似文献   

4.
 地震前的热异常已有许多研究,大多研究得出的异常区域面积过大或者远离震中以至于难以判断震中。用温度相减法研究张北地震前的温度变化,发现震前13天张北附近出现了孤立的增温区,张北站增温5.8℃,是当天整个中国东部地区的最大增温值。增温区长轴为北东向,区内分布有北东向尚义-多伦断裂。震前1天沿北西向张北—渤海断裂带张北的增温也达到最大值,张北地震即发生在这两组断裂汇而不交的部位。将增温区中心预测为震中,误差大概为80km,这一数值结果比目前大多数热异常的研究结果好,显示出气象数据在地震研究中有一定应用价值。同时,气象数据的观测和加工有全国统一的规范,处理起来简单方便,本文提出的温度相减法,简便易行,由于使用的是温度的相对变化,避免了各地小气候不同导致的温度差异。如果结合地震台网观测数据,在地震预测研究中能发挥更好的效果。  相似文献   

5.
基于美国流动台网的三分量远震P波资料,利用相对反投影方法,对2010年2月27日Mw 8.8智利地震的破裂过程成像。根据美国地质调查局(USGS)给出的震源参数及源区地质资料,设定一个小倾角断层面。将远震P波反投影至该断层面上,获取震源破裂过程。结果表明,智利地震破裂由3个子事件组成,破裂长度至少为513 km,宽度至少为100 km。破裂从震中开始向北方和南方两个方向双侧扩展,但北侧的破裂明显强于南侧。北侧的破裂长度约为340 km,破裂持续时间约125 s,破裂速度约为2.87 km/s;而南侧破裂长度约为173 km,破裂持续时间约99 s,破裂速度约为1.84 km/s。另外,北侧两个子事件的能量释放高峰分别出现在破裂开始之后16 s和79 s,与初始破裂点的距离分别为75 km和230 km。南侧子事件的能量释放高峰出现时刻为80 s,与初始破裂点的距离为145 km。智利地震在破裂过程中可能受到了破裂区域的障碍体影响。  相似文献   

6.
2017年8月8日中国四川省九寨沟县Ms 7.0级地震前, 在震源200 km范围内的九寨沟、松潘、平武、青川、茂县和汶川布设AETA系统的6个监测台。采用窗口为30日的滑动主成分分析(principal component analysis, PCA)方法, 对6个台站的电磁扰动进行特征分析, 探讨九寨沟Ms 7.0级地震前后AETA系统观测的电磁场变化特征, 并由此提出一种新的临震特征, 即AETA电磁数据经滑动PCA方法处理后得到的“条带异常”。结果显示: 1) 除九寨沟Ms 7.0级地震发震当日, 九寨沟监测台于震前5日至震后15日, 每天在同一时段(5:00 am—6:00 am)出现异常点, 形成“异常条带”, 异常程度在震前大体上呈递增变化, 震后大体上呈递减变化; 2) 震源附近其他监测台也存在异常点, 但发布零散且异常程度较小; 3) 九寨沟Ms 7.0级地震“异常条带”消失后的两个月内, 未出现新的“异常条带”, 且无强震发生。  相似文献   

7.
On December 26, 2004, a great earthquake along the northern Sumatra coast, with its consequent tsunami, caused about 300000 deaths (refer to the 2004 earth-quake hereafter). This great thrust faulting event oc-curred on the subduction zone between Indian …  相似文献   

8.
We introduced the observations and researches using a Satellite Laser Ranging (SLR) system with high precision, which was designed and made in China and installed in the Observatory of San Juan Uni- versity, Argentina, the capability of the system and the achievement of the cooperative procedure be- tween China and Argentina. The SLR station in San Juan, set up by China and Argentina, is quite sig- nificant for improving the distribution of SLR stations and enhancing the orbital coverage of the whole earth. Since the SLR system started to work in the Observatory of San Juan University in the beginning of 2006, the operation is rather good, and rich data with high precision have been obtained. Further plan of the cooperation for the near future is also presented.  相似文献   

9.
Using GPS-measured coseismic and post-seismic displacements for the 8 h following the M w 9.0 Sendai earthquake of March 11, 2011, coseismic and post-seismic fault slip models were developed based on a layered crustal model. The geodetic moment magnitude of the main shock was measured as approximately M w 8.98. The slip exhibits clear reverse characteristics, with a maximum near the hypocenter, and a magnitude of about 23.3 m. Some strike-slip behavior may occur on the two sides of the peak rupture zone. Almost 90% of the seismic moments released by the main shock occurred at depths less than 40 km. The energy released by the fault slip in the 8 h following the main shock is approximately equal to an earthquake of M w 8.13. With a maximum of ~1.5 m, the post-seismic slip was concentrated in the southwestern part of the coseismic rupture fault, which agrees well with the location and behavior of the M w 7.9 aftershock. This implies that the post-seismic deformation in the 8 h after the main shock was mainly induced by the M w 7.9 aftershock. In addition, a post-seismic slip of 0.2-0.4 m was observed at the down-dip extension of the coseismic rupture, which may have been caused by the effect of after-slip during this period.  相似文献   

10.
The combined adjustment of astronomical geode tic networks and the 2000’national GPS control net work is a national geodetic project based on the pre sent necessities and long term program of national e conomic development. This project has profound sci entific, social and economic significance, and willproduce an effect on developments of space scienceand national defense construction as well as geodesyitself.China took part in the second international radioobservational projec…  相似文献   

11.
1119年前郭地震发震构造讨论   总被引:1,自引:0,他引:1  
在充分收集和考证前人研究成果的基础上, 深入分析地震史料隐含的约束条件。以石油三维物探、浅层地球物理勘探和联合钻孔探测资料为基础, 结合地质和地貌调查, 研究1119年前郭地震的震中位置和发震构造。在1119年前郭地震的影响范围内, 发现一条区域内规模最大的晚更新世活断层——孤店断裂, 总长度约为66 km, 由两个连续性较好的弧型段组成, 钻孔资料显示其上断点埋深约为24 m, 存在晚更新世以来的断裂活动。经过断层地震危险性评估, 认为孤店断裂可能是1119年前郭地震的发震构造。  相似文献   

12.
The study found that strong magnetic anomalies repeatedly took place before big earthquakes. Based on geomagnetic record analysis results,we discussed a possible pattern of the magnetic anomalies prior to earthquake. In meizoseismal area or epicenter,in a time period of 36 h to about 10 min before earthquake,the exceptional big geomagnetic change increases with the magnitude of earthquake. We calculated that,in a place of 1 km from the epicenter,the magnetic anomaly before destructive earthquakes of Ms 6~9 can reach to 102~104 nT(the magnitude of earth magnetic field is 104 nT) ,rather than the magnitude of 10 nT from seismomagnetic effect theories since 1960s. From this we speculated the abnormal magnetic ULF near epicenter before earthquake seems to be an "intermittent magnetic eruption". Accordingly,we proposed that geomagnetic induction earthquake alarm can be a new pre-warning method to surmount hardship in solving the puzzledom of earthquake imminent prediction.  相似文献   

13.
Fracture surface energy of the Punchbowl fault, San Andreas system   总被引:3,自引:0,他引:3  
Chester JS  Chester FM  Kronenberg AK 《Nature》2005,437(7055):133-136
Fracture energy is a form of latent heat required to create an earthquake rupture surface and is related to parameters governing rupture propagation and processes of slip weakening. Fracture energy has been estimated from seismological and experimental rock deformation data, yet its magnitude, mechanisms of rupture surface formation and processes leading to slip weakening are not well defined. Here we quantify structural observations of the Punchbowl fault, a large-displacement exhumed fault in the San Andreas fault system, and show that the energy required to create the fracture surface area in the fault is about 300 times greater than seismological estimates would predict for a single large earthquake. If fracture energy is attributed entirely to the production of fracture surfaces, then all of the fracture surface area in the Punchbowl fault could have been produced by earthquake displacements totalling <1 km. But this would only account for a small fraction of the total energy budget, and therefore additional processes probably contributed to slip weakening during earthquake rupture.  相似文献   

14.
Data collected at approximately 60 Global Positioning System (GPS) sites in southeast Asia show the crustal deformation caused by the 26 December 2004 Sumatra-Andaman earthquake at an unprecedented large scale. Small but significant co-seismic jumps are clearly detected more than 3,000 km from the earthquake epicentre. The nearest sites, still more than 400 km away, show displacements of 10 cm or more. Here we show that the rupture plane for this earthquake must have been at least 1,000 km long and that non-homogeneous slip is required to fit the large displacement gradients revealed by the GPS measurements. Our kinematic analysis of the GPS recordings indicates that the centroid of released deformation is located at least 200 km north of the seismological epicentre. It also provides evidence that the rupture propagated northward sufficiently fast for stations in northern Thailand to have reached their final positions less than 10 min after the earthquake, hence ruling out the hypothesis of a silent slow aseismic rupture.  相似文献   

15.
Based on co-seismic displacements recorded by terrestrial GPS stations and seafloor GPS/acoustic stations, the static slip model of the 2011 Mw 9.0 Tohoku earthquake was determined by inverting the data using a layered earth model. According to a priori information, the rupture surface was modeled with a geometry that is close to the actual rupture, in which the fault dip angle increases with depth and the fault strike varies with the trend of the trench. As shown by the results inferred from the joint inversion, the "geodetic" moment is 3.68 × 10 22 Nm, corresponding to Mw 9.01, and the maximum slip is positioned at a depth of 13.5 km with a slip magnitude of 45.8 m. Rupture asperities with slip exceeding 10 m are mainly distributed from 39.6 to 36.97°N, over a length of almost 240 km along the trench. The slip was mostly concentrated at depths shallower than 40 km, up-dip of the hypocenter. "Checkerboard" tests reveal that a joint inversion of multiple datasets can resolve the slip distribution better than an inversion with terrestrial GPS data only-especially when aiming to resolve slip at shallow depths. Thus, the joint inversion results obtained by this work may provide a more reliable slip model than the results of other studies that are only derived from terrestrial GPS data or seismic waveform data.  相似文献   

16.
By using precise leveling data observed between 1985 and 2010 across the south section of the Longmenshan fault zone, and eliminating the coseismic displacements caused by the Wenchuan Ms 8.0 earthquake, the interseismic vertical deformation field was obtained. The result shows that the Lushan region, located between the Shuangshi-Dachuan fault (front range of the Long- menshan fault) and the Xinkaidian fault (south section of the Dayi fault), is situated in the intersection zone of positive and negative vertical deformation gradient zones, indicating that this zone was locked within 25 years before the Lushan earthquake. Based on leveling data across the rupture zone surveyed between 2010 and 2013, and by eliminating the vertical deformation within 3 years before the earthquake, the coseismic vertical displacement was derived. The coseismic vertical displacement for the benchmark DD35, which is closest to the epicenter, is up to 198.4 mm (with respect to MY165A). The coseismic dis- placement field revealed that the northwest region (hanging wall) moved upwards in comparison with the southeastern region (foot wall), suggesting that the seismogenic fault mainly underwent thrust faulting. By comparing the coseismic and interseismic vertical deformation fields, it was found that the mechanisms of this earthquake are consistent with the elastic rebound theory; the elastic strain energy (displacement deficit) accumulated before the Lu- shan earthquake was released during this quake.  相似文献   

17.
The Sumatra-Andaman earthquake on December 26, 2004 is the first well recorded gigantic earthquake (moment magnitude MW 9.3) by modern broadband seismic and Global Positioning System networks. The rich seismic and geodetic recordings have documented unprecedented details about the earthquake rupture, coseismic and postseismic deformations. This is a report of detailed images of the rupture process using the first-arriving compressional waves recorded by the China National Digital Seismic Network (CNDSN). An improved imaging condition was employed to account for the sparse distribution of the CNDSN stations. The resulting images are consistent with the major rupture features reported by previous seismic and geodetic studies. It is found that the earthquake rupture initiated at offshore of northwestern Sumatra and propagated in the north northwest direction at a speed of 2.7 ± 0.2 km/s. The rupture continued for at least 420 s and extended about 1200-1300 km along the Andaman trough with two bursts of seismic energy.  相似文献   

18.
After the 20 April 2013 Lushan MS6.6 earthquake occurred,investigation and identification of the seismogenic fault for this event have become a focused and debatable issue.This work prepared an initial landslide inventory map related to the Lushan earthquake based on field investigations and visual interpretation of high-resolution aerial photographs and provided evidence for solving the issue aforementioned.The analysis of three landslide-density profiles perpendicular to strike direction of the probable seismogenic fault shows that many landslides occurred on the footwall of the Shuangshi–Dachuan fault(SDF),without sudden change of landslide density near the fault.Very few landslides were detected near the Dayi fault(DF)and also no change of landslide density there.While obvious sudden change of landslide density appeared about 1–2 km from the northwest to the western Shangli fault(WSF),and the landslide density on the hanging wall of the fault is obviously higher than that of on the footwall.Therefore,we infer that the seismogenic fault for the Lushan earthquake is neither the SDF nor the DF,rather probably the WSF located between these two faults,which is an evident linear trace on the earth surface.Meanwhile,the coseismic slip did not propagate upward to the ground,implying the Lushan earthquake was spawned by a blind-thrust-fault beneath the WSF.  相似文献   

19.
Systematic, fixed_point and long observations and sample testing make clear distributions of methane and the homologues in the low_layer air over eastern China and sea areas. Within about 250 km from epicenter of moderate and strong earthquakes, oil_gas areas have methane concentration anomaly and CO\-2 anomaly in the low_layer atmosphere around the earthquakes, have a temperature increase by 1-6℃ at the occurrence of moderate and strong earthquakes and indicate that concentration anomaly of methane family in the low_layer air can be used as an important index for petroleum geochemical exploration.  相似文献   

20.
Lushan M S7.0 earthquake: A blind reserve-fault event   总被引:1,自引:0,他引:1  
In the epicenter of the Lushan M S7.0 earthquake there are several imbricate active reverse faults lying from northwest to southeast, namely the Gengda-Longdong, Yanjing-Wulong, Shuangshi-Dachuan and Dayi faults. Emergency field investigations have indicated that no apparent earthquake surface rupture zones were located along these active faults or their adjacent areas. Only brittle compressive ruptures in the cement-covered pavements can be seen in Shuangshi, Taiping, Longxing and Longmen Townships, and these ruptures show that a local crustal shortening occurred in the region during the earthquake. Combining spatial distribution of the relocated aftershocks and focal mechanism solutions, it is inferred that the Lushan earthquake is classified as a typical blind reverse-fault earthquake, and it is advised that the relevant departments should pay great attention to other historically un-ruptured segments along the Longmenshan thrust belt and throughout its adjacent areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号