共查询到20条相似文献,搜索用时 99 毫秒
1.
K均值算法利用K个聚类的均值作为聚类中心,通过对比样本到各聚类中心的距离,将样本划分到距离最近的聚类中,从而实现样本的聚类.分析了K均值算法的基本原理和实现步骤,并将其应用于数据聚类和图像分割,取得了较好的聚类效果.最后,针对K均值算法的不足之处,提出了改进措施,提高了K均值算法的聚类性能. 相似文献
2.
文章首先阐述了图像K-L变换的基本原理,然后再对处理后的图像应用ISODATA,FCM等方法进行图像分割,最后运用FCM算法的思想,改进方案,将聚类与传统图像处理方法相结合,对街区卫星图像进行分析,实验结果表明,改进的方案明显提高了卫星地图图像的分割速度和精度。 相似文献
3.
基于图分割的蚁群聚类算法 总被引:2,自引:0,他引:2
提出了采用两种策略更新信息素来控制蚂蚁行进路径的方法.根据信息素的浓度确定图边的权值,运用了图分割算法断裂所得图的边,从而达到对数据进行聚类的目的.实验结果证明算法是有效的. 相似文献
4.
5.
目前谱聚类在文本分类、图像分割和信息检索等领域的应用越来越引起研究者的重视,并取得了一定的成果、但是,大多数已有的谱聚类算法需要事先给定聚类数.在k-means算法、EM等聚类方法中也存在相似的问题、在此介绍了一种简单的容易实现的谱聚类算法,可以自动确定合适的聚类数.实验表明本算法结果很好、 相似文献
6.
元启发式人工智能优化算法应用于模糊聚类图像分割一直是研究热点.树种算法(TSA)是一种比较有效的智能优化算法,但标准TSA中的固定判断参数ST影响算法的收敛速度.为此,提出了随迭代次数逐渐增大的变量,并且将步长因子构造相应的非线性递减函数,使得迭代初期侧重于树种的全局搜索而后期侧重于局部搜索,提高TSA算法收敛的精度和速度.将改进TSA算法用于模糊C均值聚类算法(FCM)聚类中心生成的过程得到基于改进树种算法的模糊聚类(ITSA_FCM),这一举措能有效地避免FCM陷入局部最优.改进的算法具备优异的聚类效果和较快的运行速度. 相似文献
7.
8.
刘金清 《福建师范大学学报(自然科学版)》2012,28(6):47-51
采用动态加权的模糊核聚类算法对CT医学图像进行分割.该算法对模糊核聚类算法中的特征向量进行动态加权,以自动削弱噪声特征向量在聚类中的作用,这样可以减小噪声对图像分割的干扰.实验结果表明,采用该种新算法对CT图像分割后,可以获得更清晰的分割图像. 相似文献
9.
针对传统模糊C-均值(FCM)算法抗噪性能差的问题,提出一种新的基于空间模糊聚类的图像分割优化算法.该算法通过在传统FCM算法基础上加入图像特征项中像素间的空间位置信息,解决了传统FCM对噪声敏感的问题,增强了算法的鲁棒性.实验结果表明,对于添加5%Gauss噪声的图像,该算法可实现有效分割,分割效果显著优于传统FCM算法. 相似文献
10.
基于Fuzzy c-means算法聚类有效性函数的纹理分割 总被引:1,自引:1,他引:1
Fuzzy c-means(FCM)算法用于图像分割是一种非监督模糊聚类后再标定的过程.本文利用聚类有效性函数对Fuzzy c-means算法的聚类结果进行评价,从而获得最优的聚类结果,较好地解决了Fuzzy c-means算法的一些不足,如聚类数目无法自动确定、其聚类结果是否最优.最后,利用纹理图像分割实验验证了该算法的有效性. 相似文献
11.
模糊C-means算法是一种重要的聚类分析算法,但是在数据维数较高的情况下,该算法计算量急剧上升从而导致其效率较低.针对这一问题,提出了一种基于粗糙集理论的模糊C-means高维数据聚类算法,该算法在传统模糊C-means算法的基础上引入了粗糙集属性约简的理念,通过对数据集属性的约简,提取出对分类影响较大的属性集而摒弃与分类无关的属性,进而在聚类过程中只计算属性约简结果集中的属性,从而减少聚类过程的工作量、提高聚类效率.理论分析和实验结果表明,该算法在处理高维数据时较高效. 相似文献
12.
给出一种将网格技术、密度技术与分形理论的自相似性结合起来的一种有效聚类算法,利用分形维度变化最小同时是相似程度最大的特点来划分数据集从而得出聚类结果.实验表明该算法可以快速有效的处理多维大型数据集,识别出任意形状簇的个数,而且可以从数据集中挖掘出一些有用的分布信息. 相似文献
13.
K-Means算法是划分式聚类算法。本文通过在应用中的编程实现分析了基于欧式距离的划分式聚类算法的基本原理、实现步骤和编程时的注意事项,最后分析了该算法的优缺点。 相似文献
14.
为延长网络的生命周期,针对随机部署的无线传感器网络节点均匀分布和能量有限的特点,提出了一种基于节点划分的分布式自适应分簇算法.通过节点的划分均衡簇内负载,利用节点的剩余能量与通信距离信息的自适应加权来优化调整节点竞选簇头的概率.模拟实验结果表明,该算法可有效延长网络的稳定周期和生存时间,数据传输量比LEACH-E算法增加了近20%. 相似文献
15.
提出基于集合差异度的聚类算法. 算法通过定义的集合差异度和集合精简表示,直接进行一个集合内所有对象总体差异程度的计算,而不必计算两两对象间的距离,并且在不影响计算精确度的情况下对分类属性高维数据进行高度压缩,只需一次数据扫描即得到聚类结果. 算法计算时间复杂度接近线性. 实例表明该算法是有效的. 相似文献
16.
在冶金、化工等流程型工业领域,生产中的过程控制参数往往具有高维非线性结构特征.为了解决这类高维复杂数据的异常点检测问题,本文引入了软超球体的概念,采用非线性核函数将原始数据映射到高维的特征空间,并在特征空间中确定软超球体的边界.通过检测待识别样本映射到特征空间的位置信息来判定过程参数的设定值是否为异常点,从而避免出现批量的产品质量问题.以某类汽车用钢为应用实例,对实际生产数据进行检测,证明了所提出的基于软超球体的异常点识别算法对于高维的非线性数据具有良好的检测能力. 相似文献
17.
平行坐标可视化是数据可视化方法中的典型代表.在平行坐标法可视化的基本原理的基础上,实现了在数据可视化过程中嵌入维度限制条件,探讨了在维约束条件下的平行坐标可视化技术.以海洋监测台站数据为例,开发了DBSCAN聚类算法,并利用平行坐标对聚类的结果进行可视化表达. 相似文献
18.
An algorithm, Clustering Algorithm Based On Sparse Feature Vector (CABOSFV), was proposed for the high dimensional clustering of binary sparse data. This algorithm compresses the data effectively by using a tool ‘Sparse Feature Vector’, thus reduces the data scale enormously, and can get the clustering result with only one data scan. Both theoretical analysis and empirical tests showed that CABOSFV is of low computational complexity. The algorithm finds clusters in high dimensional large datasets efficiently and handles noise effectively. 相似文献
19.
Clustering data with varying densities and complicated structures is important,while many existing clustering algorithms face difficulties for this problem. The reason is that varying densities and complicated structure make single algorithms perform badly for different parts of data. More intensive parts are assumed to have more information probably,an algorithm clustering from high density part is proposed,which begins from a tiny distance to find the highest density-connected partition and form corresponding super cores,then distance is iteratively increased by a global heuristic method to cluster parts with different densities. Mean of silhouette coefficient indicates the cluster performance. Denoising function is implemented to eliminate influence of noise and outliers. Many challenging experiments indicate that the algorithm has good performance on data with widely varying densities and extremely complex structures. It decides the optimal number of clusters automatically.Background knowledge is not needed and parameters tuning is easy. It is robust against noise and outliers. 相似文献
20.
一种基于粗糙集的数据约简改进算法 总被引:1,自引:0,他引:1
在应用粗糙集理论对决策表进行数据处理时对数据约简算法进行了改进,以达到提高约简效率的目的.在进行属性约简时采用分辨矩阵的做法,但其缺点是生成中间过程的数据时需要耗费大量的资源,可以考虑在生成分辨矩阵时的循环过程中利用吸收律及时进行化简,在记录比较多的情况下对于降低宅间利用率,提高运算速度是有效的.在对属性值进行约简生成规则时,针对生成等价类时间复杂度高的问题,不再对每一个节点约简时调用等价类生成函数,而是采用生成一次等价类,存储多次调用的办法,大大降低了时间复杂度,提高了运行效率. 相似文献