首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
《Nature genetics》2011,43(3):173
The substantial $10 million purse of the Archon Genomics X PRI ZE (AGXP) is being offered for the generation of rapid, accurate and complete human DNA sequences. Because so many genomics researchers have a stake, we offer to help with a process of community consultation to help evolve fair and efficient methods to validate contestant data for the competition.  相似文献   

4.
5.
6.
The scientific process, and scientific progress, require a critical examination of all published reports. Recent publications detailing errors in the draft human genome sequence are an integral part of our quest to better understand nature and demonstrate the value of free access to scientific data.  相似文献   

7.
8.
9.
To gain insight into the function of DNA methylation at cis-regulatory regions and its impact on gene expression, we measured methylation, RNA polymerase occupancy and histone modifications at 16,000 promoters in primary human somatic and germline cells. We find CpG-poor promoters hypermethylated in somatic cells, which does not preclude their activity. This methylation is present in male gametes and results in evolutionary loss of CpG dinucleotides, as measured by divergence between humans and primates. In contrast, strong CpG island promoters are mostly unmethylated, even when inactive. Weak CpG island promoters are distinct, as they are preferential targets for de novo methylation in somatic cells. Notably, most germline-specific genes are methylated in somatic cells, suggesting additional functional selection. These results show that promoter sequence and gene function are major predictors of promoter methylation states. Moreover, we observe that inactive unmethylated CpG island promoters show elevated levels of dimethylation of Lys4 of histone H3, suggesting that this chromatin mark may protect DNA from methylation.  相似文献   

10.
A new approach for the isolation of chromosome-specific subsets from a human genomic yeast artificial chromosome (YAC) library is described. It is based on the hybridization with an Alu polymerase chain reaction (PCR) probe. We screened a 1.5 genome equivalent YAC library of megabase insert size with Alu PCR products amplified from hybrid cell lines containing human chromosome 21, and identified a subset of 63 clones representative of this chromosome. The majority of clones were assigned to chromosome 21 by the presence of specific STSs and in situ hybridization. Twenty-nine of 36 STSs that we tested were detected in the subset, and a contig spanning 20 centimorgans in the genetic map and containing 8 STSs in 4 YACs was identified. The proposed approach can greatly speed efforts to construct physical maps of the human genome.  相似文献   

11.
12.
It is often supposed that, except for tandem duplicates, genes are randomly distributed throughout the human genome. However, recent analyses suggest that when all the genes expressed in a given tissue (notably placenta and skeletal muscle) are examined, these genes do not map to random locations but instead resolve to clusters. We have asked three questions: (i) is this clustering true for most tissues, or are these the exceptions; (ii) is any clustering simply the result of the expression of tandem duplicates and (iii) how, if at all, does this relate to the observed clustering of genes with high expression rates? We provide a unified model of gene clustering that explains the previous observations. We examined Serial Analysis of Gene Expression (SAGE) data for 14 tissues and found significant clustering, in each tissue, that persists even after the removal of tandem duplicates. We confirmed clustering by analysis of independent expressed-sequence tag (EST) data. We then tested the possibility that the human genome is organized into subregions, each specializing in genes needed in a given tissue. By comparing genes expressed in different tissues, we show that this is not the case: those genes that seem to be tissue-specific in their expression do not, as a rule, cluster. We report that genes that are expressed in most tissues (housekeeping genes) show strong clustering. In addition, we show that the apparent clustering of genes with high expression rates is a consequence of the clustering of housekeeping genes.  相似文献   

13.
14.
15.
Francisella tularensis is one of the most infectious human pathogens known. In the past, both the former Soviet Union and the US had programs to develop weapons containing the bacterium. We report the complete genome sequence of a highly virulent isolate of F. tularensis (1,892,819 bp). The sequence uncovers previously uncharacterized genes encoding type IV pili, a surface polysaccharide and iron-acquisition systems. Several virulence-associated genes were located in a putative pathogenicity island, which was duplicated in the genome. More than 10% of the putative coding sequences contained insertion-deletion or substitution mutations and seemed to be deteriorating. The genome is rich in IS elements, including IS630 Tc-1 mariner family transposons, which are not expected in a prokaryote. We used a computational method for predicting metabolic pathways and found an unexpectedly high proportion of disrupted pathways, explaining the fastidious nutritional requirements of the bacterium. The loss of biosynthetic pathways indicates that F. tularensis is an obligate host-dependent bacterium in its natural life cycle. Our results have implications for our understanding of how highly virulent human pathogens evolve and will expedite strategies to combat them.  相似文献   

16.
Here we present a draft genome sequence of the nematode Pristionchus pacificus, a species that is associated with beetles and is used as a model system in evolutionary biology. With 169 Mb and 23,500 predicted protein-coding genes, the P. pacificus genome is larger than those of Caenorhabditis elegans and the human parasite Brugia malayi. Compared to C. elegans, the P. pacificus genome has more genes encoding cytochrome P450 enzymes, glucosyltransferases, sulfotransferases and ABC transporters, many of which were experimentally validated. The P. pacificus genome contains genes encoding cellulase and diapausin, and cellulase activity is found in P. pacificus secretions, indicating that cellulases can be found in nematodes beyond plant parasites. The relatively higher number of detoxification and degradation enzymes in P. pacificus is consistent with its necromenic lifestyle and might represent a preadaptation for parasitism. Thus, comparative genomics analysis of three ecologically distinct nematodes offers a unique opportunity to investigate the association between genome structure and lifestyle.  相似文献   

17.
18.
Loss of heterozygosity (LOH) of markers on human chromosome 7q31 is frequently encountered in a variety of human neoplasias, indicating the presence of a tumor-suppressor gene (TSG). By a combination of microcell-fusion and deletion-mapping studies, we previously established that this TSG resides within a critical region flanked by the genetic markers D7S522 and D7S677. Using a positional cloning strategy and aided by the availability of near-complete sequence of this genomic interval, we have identified a TSG within 7q31, named ST7 (for suppression of tumorigenicity 7; this same gene was recently reported in another context and called RAY1). ST7 is ubiquitously expressed in human tissues. Analysis of a series of cell lines derived from breast tumors and primary colon carcinomas revealed the presence of mutations in ST7. Introduction of the ST7 cDNA into the prostate-cancer-derived cell line PC3 had no effect on the in vitro proliferation of the cells, but abrogated their in vivo tumorigenicity. Our data indicate that ST7 is a TSG within chromosome 7q31 and may have an important role in the development of some types of human cancer.  相似文献   

19.
20.
TIN2, a new regulator of telomere length in human cells   总被引:25,自引:0,他引:25  
Telomeres are DNA-protein structures that cap linear chromosomes and are essential for maintaining genomic stability and cell phenotype. We identified a novel human telomere-associated protein, TIN2, by interaction cloning using the telomeric DNA-binding-protein TRF1 as a bait. TIN2 interacted with TRF1 in vitro and in cells, and co-localized with TRF1 in nuclei and metaphase chromosomes. A mutant TIN2 that lacks amino-terminal sequences effects elongated human telomeres in a telomerase-dependent manner. Our findings suggest that TRF1 is insufficient for control of telomere length in human cells, and that TIN2 is an essential mediator of TRF1 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号