共查询到20条相似文献,搜索用时 0 毫秒
1.
记χat'e(G)为图G的邻点可区别E-全色数.若Pm是m阶的路,Sn是n+1阶的星,且nm≥2,则χate(Pm∨Sn)=4;若Pm是m阶的路,Fn是n+1阶的扇,且m≥2,n≥2,则χate(Pm∨Fn)=5;若Pm是m阶的路,Wn是n+1阶的轮,且m≥2,n≥3,如果n≡0(mod 2),则χate(Pm∨Wn)=5,如果n≡1(mod 2),则χate>(Pm∨Wn)=6;若Pm是m阶的路,Kn是n阶完全图,且n≥4,m≥2,则χate+(Pm∨Kn)=n+2. 相似文献
2.
董秀芳 《海南大学学报(自然科学版)》2014,32(3):200-204
以一个简单图G为基础,连接G的任意最短路长为k的2个顶点就可得到基础图G的k-幂图,研究了路的k-幂图和圈的2-幂图的邻点可区别E-全染色问题,并结合该类幂图的结构性质,运用构造法、反证法和穷举分类染色技术给出了其邻点可区别E-全色数,为确定图的各类染色问题提供了有效的借鉴. 相似文献
3.
王继顺 《兰州理工大学学报》2014,40(4):159-162
图G的I-全染色是指对图G的顶点和边染色,使得任意两个相邻的点的颜色不同,任意两条相邻的边的颜色不同.图G的一个I-全染色称为是邻点可区别的,如果任意两个相邻顶点u,v的色集合C(u)≠C(v),这里C(u)={f(u)}∪{f(uv)|uv∈E(G)}.而图G的邻点可区别I-全染色中所用的最少色数称为图G的邻点可区别I-全色数.讨论路与扇的联图Pm∨Fn、路与轮联图Pm∨Wn的邻点可区别I-全染色问题,根据这类图的结构性质运用色构造法给出它们的邻点可区别I-全染色方法,从而有效地确定其邻点可区别I-全色数. 相似文献
4.
运用组合分析法及构造具体染色的方法,讨论满足某些条件的两个图合成的邻点可区别E-全染色,得到了Pn,Cn,Fn,Wn相互合成后所得图的邻点可区别E-全色数. 相似文献
5.
应用构造具体染色的方法得到了两类3-正则图的邻点可区别E-全色数,进一步验证了关于图的邻点可区别E-全染色的猜想. 相似文献
6.
运用分析法和构造邻点可区别E-全染色函数法,研究了冠图Cm·Cn、Cm·Sn、Cm·Fn和Cm·Wn的邻点可区别E全染色,得到了冠图圈与圈、圈与星、圈与扇和圈与轮的邻点可区别E-全色数,进一步验证了图的邻点可区别E全染色猜想. 相似文献
7.
运用分析法研究了直积图的邻点可区别 E-全染色,讨论了对于点色数至少为2以及邻点可区别 E-全色数为3,4的简单图的直积图的邻点可区别 E-全色数,并得出了一些相关推论。 相似文献
8.
若一个正常全染色其相邻顶点的色集不同时,就称之为邻点可区别全染色,邻点可区别全染色所用颜色的最小数称为邻点可区别全色数.本文研究了联图Wm∨Pm(n≥4)的邻点可区别全色数。 相似文献
9.
邻点可区别全染色是在全染色的基础上,要求相邻顶点的色集合互不相同.通过设计染色方案,给出轮与圈的联图Wm∨Cn的邻点可区别全色数. 相似文献
10.
G(V,E)是一个简单图,k是一个正整数,f是V(G)∪E(G)到{1,2,…,k}的一个映射.如果uv∈E(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}.称 f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数.得到路和圈的联图的邻点可区别E-全色数. 相似文献
11.
陈祥恩 《兰州大学学报(自然科学版)》2007,43(5):91-93
对一个简单图G的一个正常全染色,来说,G的点v的色集合C(v)是与v关联的边的颜色以及点v的颜色所构成的集合.对此f,如果G的任意两个相邻顶点的色集合不同,则称,为G的邻点可区别全染色.对G进行邻点可区别全染色所需要的最少颜色数称为G的邻点可区别全色数.对图rK2∨K8的邻点可区别全色数进行了讨论. 相似文献
12.
讨论了C_m+C_n,S_m+S_n,F_m+F_n,W_m+W_n等一些联图的邻点可区别一边全染色,得到了它们的邻点可区别一边全色数. 相似文献
13.
《淮阴师范学院学报(自然科学版)》2016,(1):5-10
讨论了冠图C_n■C_m的邻点可区别均匀E-全染色,并得到了它们的邻点可区别均匀E-全色数.对简单图G,如果图G存在一个染色法f,使得任意两个相邻的顶点染不同的颜色;任意一条边与其关联的点染不同的颜色;任意两个相邻的点的色集合不相同,并且任意两色所染元素的数目之差不超过1,则称该染色法为G的邻点可区别均匀E-全染色,其所用最少颜色数称为该图的邻点可区别均匀E-全色数. 相似文献
14.
G(V,E)是一个简单图,k是一个正整数,f是一个V(G)∪E(G)到{1,2,…,k}的映射,如果(A)uv∈E(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),其中,C(u)={f(u)}∪{f(uv)|uvEE(G)},称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数,给出了奇圈、偶圈与轮的多重联图的邻点可区别E-全色数. 相似文献
15.
田双亮 《西北民族学院学报》2006,27(1):5-7
研究若干联图的邻点可区别全染色,证明了:当n≥3时,χat(Kn∨Cn)=χat(Kn∨Pn)=2n+1;当n≥4时,χat(Kn∨Wn?1)=χat(Kn∨Fn?1)=χat(Kn∨Sn?1)=2n+1. 相似文献
16.
在图 G 的一个正常全染色下,G 中任意一点 v 的色集合是指点 v 的色以及与 v 关联的全体边的色所构成的集合。图 G 的邻点可区别全染色就是图 G 的正常全染色且使相邻点的色集合不同,其所用最少颜色数称为图 G的邻点可区别全色数。设计了一种启发式的邻点可区别全染色算法,该算法根据邻点可区别全染色的约束规则,确定四个子目标函数和一个总目标函数,然后借助染色矩阵及色补集合逐步迭代交换,每次迭代交换后判断目标函数值,当目标函数值满足要求时染色成功。实验结果表明,该算法可以得到图的邻点可区别全色数,并且算法的时间复杂度不超过 O(n3)。 相似文献
17.
为了解决图的邻点可区别全染色中一个图的色数算法问题,从沿联图的结构特点出发,对一类沿联图的邻点可区别全染色问题进行了研究,并得到了它的邻点可区别全色数. 相似文献
18.
严谦泰 《科技导报(北京)》2010,28(21):78-81
邻点可区别全染色是在正常全染色的定义下,使得任两相邻顶点的色集不同。设G(V,E)为一个简单图,f为G的一个k-邻点可区别全染色,若f满足||Vi∪Ei|-|Vj∪Ej||≤1(i≠j),其中,Vi∪Ei={v|f(v)=i}∪{e|f(e)=i},记C(i)=Vi∪Ei,则称f为G的k-均匀邻点可区别全染色,简记为k-EAVDTC,并称χeat(G)=min{k|G存在k-均匀邻点可区别全染色}为G的均匀邻点可区别全染色数。本文给出了路、圈、风车图K t 3、图Dm,4和齿轮图■n的均匀邻点可区别全染色,以及它们的均匀邻点可区别全色数的确切值。 相似文献
19.
根据点可区别全染色的概念及其染色方法,讨论了路与轮联图的点可区别全染色,给出了路与轮联图的点可区别全色数的结论及其证明,为进一步探讨其他联图的点可区别全染色提供了理论证据,丰富了图的点可区别全染色的结果. 相似文献
20.
邻点可区别全染色是在全染色的基础上,要求相邻顶点的色集合互不相同.通过设计染色方案,给出轮与圈的联图WmVCn的邻点可区别全色数. 相似文献