首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
将小波函数引入支持向量机核函数,同时在支持向量机的学习算法上,引入了改进的粒子群优化算法,使得支持向量机的参数得到最优解,从而建立上市公司财务困境预警模型。实验结果表明,本文提出方法的预测准确率高于普通的小波支持向量机预警模型。  相似文献   

2.
采用合成核函数构造支持向量机模型,运用粒子群优化算法(PSO)对模型参数进行参数寻优,利用UCI数据集的数据进行分类验证.与单核SVM相比,该方法具有更好的分类能力和运算速度.将合成核SVM应用到风机齿轮箱的故障诊断中,取得了良好的效果.  相似文献   

3.
农业科技项目投入是解决“三农问题”的关键途径,而农业科技项目分类是农业科技项目投入的参考依据.支持向量机( SVM)是借助最优化方法解决分类问题的方法,较好地克服了“维数灾难”和“有限样本的学习分类”等问题.通过选择不同的核函数和对应的参数可以构造不同的分类器,参数的选择决定了其学习和泛化能力.为此,提出了粒子群优化(...  相似文献   

4.
廖淑娇 《科学技术与工程》2012,12(11):2660-2664
目前,支持向量机( SVM)常用的参数寻优方法存在易陷入局部极值的缺点,而其常用的核函数的逼近精度也有待提高.基于混沌映射的遍历性与随机性和小波变换的局部分析与特征提取能力,提出了一种混沌粒子群优化小波支持向量机(CPSO-WSVM)的算法,并应用它构建汇率预测模型.实验结果表明,相比传统的粒子群优化高斯核SVM(PSO-GSVM)的算法,CPSO-WSVM算法大大提高了预测的精度和效率,应用效果好.  相似文献   

5.
为提高啤酒企业包装车间生产耗电的预测精度, 提出了一种基于支持向量机和粒子群优化算法的预测模型构建方法。该方法将radial basis function函数作为支持向量机的核函数构建预测模型, 使用K-fold交叉验证方法, 利用粒子群算法(PSO: Particle Swarm Optimization)对惩罚参数c和g值寻优。以28天的生产耗水和生产耗电数据作为训练集, 以10天的生产耗水数据作为预测集, 分别构建基于radial basis function函数与polynomial函数的生产耗电支持向量机预测模型对生产耗电数据进行预测。实验结果表明, 以radial basis function函数作为核函数与以polynomial函数作为核函数相比, 该支持向量机预测模型对生产耗电的预测精度提高了51.495%,该方法具有一定的实用性。  相似文献   

6.
为了准确预测交通流量,为实施交通疏导提供参考依据,提出了一种基于小生境粒子群优化高斯小波核函数支持向量机的交通流量预测方法。首先将小波思想引入核函数,使用高斯小波核函数取代了经典支持向量机的高斯核函数。同时在支持向量机的学习算法上引入了小生境粒子群优化算法,基于小生境粒子群的多样性的优势,使得支持向量机的参数得到最优解。最后进行了预测仿真,结果表明本文方法的预测精度高于传统方法。为交通流量的预测方法提供了一种参考。  相似文献   

7.
支持向量机可以引入特征变换将原空间的非线性问题转化为新空间的线性问题。本文在论述支持向量机模型创建的基础上,着重对核函数的选取及参数的确定进行了研究,通过实验数据表明,文中创建的组合核函数,在人体下肢动作模式识别中,有较高的识别率。  相似文献   

8.
费娜 《科技资讯》2011,(30):89-90
支持向量机是建立在统计学习理论基础上的一种小样本机器学习方法,用于解决二分类问题。本文阐述了支持向量机的理论基础并对核函数的参数选择进行了分析研究。  相似文献   

9.
在核函数基础上,提出了一种融合支持向量机和核主元分析的核PCA支持向量机综合集成分类方法,给出了算法实现步骤。仿真实验表明了该算法具有很好的分类性能,特别适合于消除噪声情形的模式识别问题。  相似文献   

10.
基于组合核支持向量机的图像边缘检测   总被引:1,自引:0,他引:1  
基于支持向量机在分类上有很好的效果,提出了一种新的边缘检测方法--基于组合核支持向量机的图像边缘检测。该方法利用支持向量机分类对较多的训练样本数据进行训练,从而实现了图像边缘定位。通过实验验证了该方法比传统的边缘检测算子效果好。  相似文献   

11.
简要介绍了基于统计学习理论中结构风险最小化原则的支撑向量机(SVMs)技术的国内外研究现状,分析了该技术的优越性和存在的某些局限,并提出了该技术的一些改进思路.  相似文献   

12.
啤酒瓶检测中多分类支持向量机算法的选择   总被引:1,自引:0,他引:1  
在提取啤酒瓶的缺陷特征后,如何选择合适的多分类支持向量机算法对提高分类准确率和分类速度具有重要的作用.本文通过一对一、一对多、决策有向无环图、二叉树、误差纠错码、一次性求解等多分类支持向量机算法在核函数为线性、多项式、径向基,神经网络的情况下,对多个基准样本进行了分类性能、分类速度、分类准确性的详细比较以及完整的理论分析,最终得出一对一多分类支持向量机在径向基核函数时性能优于其他算法.在啤酒瓶智能检测机器人上的实验,表明这种算法能够满足检测需要.  相似文献   

13.
基于支持向量机的遥感图像分类研究   总被引:5,自引:0,他引:5  
支持向量机(Support Vector Machine,SVM)是一种基于统计学习理论的新型机器学习算法.通过解算最优化问题,在高维特征空间中寻找最优分类超平面,从而解决复杂数据的分类及回归问题.将支持向量机理论应用到遥感图像分类的研究还处在初级阶段,传统分类算法应用于遥感图像分类存在运算速度慢、精度比较低和难以收敛等问题.从支持向量机基本理论出发,建立了一个基于支持向量机的遥感图像分类器.用遥感图像数据进行实验,并将结果与其它方法的结果进行了比较分析.实验结果表明,利用SVM进行遥感图像分类的精度明显优于神经网络算法和最大似然算法分类精度.  相似文献   

14.
改进支持向量机对污水处理厂运行状况的故障诊断   总被引:1,自引:0,他引:1  
针对污水处理厂运行时故障数据不平衡性和代价敏感等特点,构造风险泛函RWLOO(α)来改进支持向量机(Support vector machine,SVM);并用遗传算法(GA)对风险泛函求全局最优.在GA对RWLOO(α)寻优过程中,SVM的几个参数以及核函数同时进行最优化.结果表明:用改进的SVM对污水处理厂的故障数据进行分类时,比未经改进的SVM错分类率低16.5%.  相似文献   

15.
孙秋凤 《科学技术与工程》2013,13(1):126-129,135
MicroRNA是一种单链RNA小分子,是由具有发夹结构的、更长的单链RNA前体经加工后生成.相比microRNA序列本身而言,其前体序列和二级结构隐含了更多的可识别特征与信息.因此可利用加权Levenshtein距离,结合其前体序列和二级结构构造一个指数核函数.结合SVM构造识别模型,鉴别真假前体.在用5折叠法得到最佳识别模型后,对人类数据进行测试.实验结果显示,新方法表现出了较好的识别精度,和较高的敏感性与特异性.  相似文献   

16.
基于小生境遗传算法的支持向量机分类器参数优化   总被引:2,自引:0,他引:2  
该文在建立支持向量机分类器分类性能评价函数基础上,分析了支持向量机参数对分类性能的影响,提出了一种基于共享函数小生境遗传算法的支持向量机分类器参数优化方法.该方法利用支持向量机分类性能评价函数评价支持向量机的分类性能,评价函数的倒数作为适应度值,每两个个体之间的海明距离作为共享函数,实现小生境遗传算法.将该文提出的方法应用于5个由Gunna Ratsch收集的标准模式库,实验结果表明由该方法所得参数确定的SVM分类器具有较高的识别率和较简单的结构.  相似文献   

17.
粒子群优化算法能选择适当的适应度函数,使每组粒子群根据相应的适应值搜索到最佳聚类中心,改善了FCM算法和K-means算法的不足,具有适应性强,实时性好,受噪声影响小等特点。本文将其应用于脑部肿瘤图像的分割,结果表明,粒子群聚类算法是一种很有潜力的图像分割方法。  相似文献   

18.
为节约实验成本, 提高工作效率, 提出利用计算的方法预测B细胞表位, 通过预测得到较为精确的结果。提取氨基酸的10个表位相关属性特征, 并使用支持向量机的分类方法对抗原表面氨基酸进行分类, 预测得到候选表位残基。最后通过15个测试例, 验证了笔者算法的有效性。  相似文献   

19.
提出一种基于合成核支持向量机的高光谱数据分类方法。该方法首先对高光谱数据进行分组, 对得到的不同数据组分别运用支持向量机方法进行分类参数的优化, 然后组合不同的核函数来综合不同的数据组, 得到最终的分类结果。利用华盛顿地区 HYDICE 高光谱数据对所提出的方法进行评价和验证, 结果表明, 基于合成核支持向量机的高光谱图像分类, 可获得比传统支持向量机更高的分类精度。  相似文献   

20.
给出一种结合张量特征和孪生支持向量机的群体行为识别算法,以提高对视频中群体行为识别的准确率.首先通过群成员关节点骨架的姿态结构信息和群成员的社会网络信息描述群体在每一帧中的行为,并采用张量形式表示;然后使用多路非线性特征映射分解张量核,并利用粒子群优化张量核孪生支持向量机的模型参数;最后结合张量特征和孪生支持向量机实现视频中的群体行为识别.CAD2数据集和自建数据集上的实验结果表明,张量特征能够有效地表示群体行为,相比经典算法,所提算法能有效提高群体行为识别的准确率.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号