首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
 组蛋白甲基化修饰对遗传信息解读有着重要影响,是表观遗传调控的主要机制之一。组蛋白甲基化可以被一类称作"阅读器"的结构域所特异识别并介导下游生物学事件。本文综述了目前已知的组蛋白甲基化阅读器(包括"皇室家族"成员、PHD锌指及BAH 等结构域)的结构特征及其对于甲基化修饰位点和程度特异性识别的分子基础。另外,探讨了表观遗传修饰调控中的组合识别、修饰对话等概念与机制。  相似文献   

2.
表观遗传包括通过DNA甲基化、组蛋白修饰、染色质重塑和RNA干扰等,通过这些机制干扰了正常基因的功能。越来越多的研究表明,DNA甲基化和组蛋白修饰异常,在多种肿瘤的发生中起重要作用。本文对表观遗传的分子机制,和同肿瘤发生的关系,以及肿瘤的表观治疗策略作了详细的综述。  相似文献   

3.
组蛋白甲基化修饰在真核生物的表观遗传调控中具有重要作用.SET结构域蛋白质可以特异地甲基化修饰组蛋白的赖氨酸残基,进而促进或抑制基因的表达.有关SET结构域蛋白质和组蛋白赖氨酸甲基化的研究为深入了解染色质结构和功能提供了重要信息.文中综述了组蛋白赖氨酸甲基化修饰在植物中的最新进展,探讨了SET结构域蛋白质在植物生长发育调控中的重要作用.  相似文献   

4.
正A:蜂王浆中的蛋白质(特别是蜂王浆主蛋白1,MRJP1)能够激活幼虫体内的特定信号通路,引起一系列反应,最终表现为降低其DNA的甲基化水平。甲基化是一种重要的表观遗传修饰,能够调控基因的表达。由此决定了工蜂和蜂后不同的发育模式。  相似文献   

5.
组蛋白H3第36位赖氨酸的甲基化修饰在染色质上含量丰富,与活跃转录以及DNA损伤修复等重要生理过程相关.H3K36位点可以被一甲基化、二甲基化和三甲基化3种形式修饰,目前已知的负责组蛋白H3K36三甲基化修饰的人源蛋白是SETD2,负责组蛋白H3K36二甲基化修饰的酶包含NSD1、NSD2和NSD3和ASH1L共4名成员.这些H3K36甲基转移酶都具有非常特异的H3K36位点选择性,因此,对调控体内H3K36甲基化修饰的水平和分布十分重要.此外,它们的表达异常与人类的多种疾病相关.因此,解析组蛋白H3K36甲基转移酶识别并修饰组蛋白底物的分子机制,对揭示这些酶参与的表观遗传调控机制及其在体内的生理功能都具有十分重要的意义.早期的研究使得人们对组蛋白H3K36甲基转移酶催化底物的机制有了较深入的认识,但是由于解析的修饰酶与底物复合物的结构较少,对这些酶特异识别组蛋白底物分子机制的认识尚有很多不足.近年来,随着冷冻电镜技术的应用,H3K36甲基转移酶与核小体底物的复合物结构相继取得了突破,极大地推进了人们对这些酶识别并催化组蛋白底物分子机制的认识.本文以这几个组蛋白H3K36甲基转移酶为主要目标,对其分子机制的最新进展进行介绍总结.   相似文献   

6.
蓝细菌是研究光合作用的理想实验系统,在光系统Ⅱ组成,相关基因及遗传修饰等分子水平上的探索已取得重大进展,主要介绍了光系统Ⅱ反应中心蛋白复合物,天线色素蛋白复合物,细胞色素蛋白复合物,锰稳定蛋白复合物等主在蛋白成份,相关基因,以及利用分子生物学操作对蛋白组分功能的研究工作。  相似文献   

7.
血管衰老是伴随年龄增长而出现的血管结构和功能的改变,主要包括血管重塑、血管稳态失衡以及血管细胞的衰老.表观遗传调控是在不改变DNA序列的情况下改变基因的表达,其主要机制包括DNA甲基化、组蛋白修饰以及非编码RNA的调控等.目前的研究表明各种表观遗传调控途径参与血管衰老的各个层面,在血管衰老及相关疾病的发生发展中扮演重要角色.靶向表观遗传调控的药物有望成为衰老相关疾病新的治疗方向.  相似文献   

8.
《科技导报(北京)》2013,31(14):14-14
中国科学院华南植物园李洁尉等揭示了种子成熟过程的表观遗传调控机制。该研究对通过表观遗传调控改善作物性状、提高作物产量、解决国粮食安全问题具有重要理论意义。研究表明,种子贮藏蛋白基因的表达受许多不同调控因子影响。然而,学界关于它们的作用机理并不清楚。此次,研究人员发现拟南芥组蛋白去乙酰化酶HDA19突变体种子成熟基因可在幼苗中异位表达,这揭示种子发育表观遗传调控机理  相似文献   

9.
DNA甲基化作为一种重要的表观遗传修饰,在生长发育、基因调控、染色质结构、分子印记以及许多疾病中起着至关重要的作用.随着各种测序技术的不断发展产生了大量的DNA甲基化数据,对其数据进行分析是目前DNA甲基化研究的一个热点和难点.目前针对于DNA甲基化数据的研究主要体现在基因组的局部区域上,而针对全基因组的分析则无法直观表现.为了更加直观的分析同一位点不同修饰信号的DNA甲基化数据间的差别,本文采用了一种专门针对表观遗传研究的数据库—WashU Epigenome Browser,针对人类表观遗传学药物数据库(HEDD)中的疾病数据,可视化的分析不同修饰信号间的差异并用数据波峰图来解释说明.  相似文献   

10.
人消化道肿瘤的表观遗传学研究   总被引:1,自引:0,他引:1  
肿瘤的发生机制中有遗传学说和表观遗传学说.后者研究的主要内容包括DNA甲基化修饰和组蛋白的各种修饰.消化道肿瘤的发生发展存在表观遗传修饰的异常,如癌基因的低甲基化和抑癌基因的高甲基化,也同时存在着组蛋白乙酰化等修饰的紊乱.通过干预表观遗传修饰防治消化道肿瘤具有广阔的应用前景.  相似文献   

11.
<正>DNA复制是一个确保遗传信息精确传递的生命过程。细胞在DNA合成前期G1期时,复制起始识别复合物识别染色质上的复制位点,进一步招募DNA解旋酶MCM(Minichromosome maintenance)等,形成复制前体复合物,完成复制起始位点的认证。而当细胞进入复制期S期时,被认证的复制起始位点被选择性地激活使用。真核生物DNA复制起始位点的选择受DNA序列和表观遗传因素共同调控。目前,表观遗传因素对染色质上DNA复制起始位点的选择机制仍然不清楚。  相似文献   

12.
通过对几种多细胞动物的基因组研究,人们发现个体所有细胞里的DNA序列顺序实际上没有区别。这一结果意味着基因信息本身不能完全调控细胞分化或器官发育时不同细胞的基因表达差异。类似的研究也揭示了调控基因转录的一种复杂而重要的机制,它通过染色体进行表观遗传修饰影响其构型,从而达到调控转录的作用。免疫系统的表观遗传调控是一个新兴的学科,  相似文献   

13.
细胞是生命活动的最小单元,其功能可塑性及动力学特征是维系生命个体健康及物种繁衍的重要保证.在分子水平,细胞可塑性与动力学特征受遗传学及表观遗传学的调控.随着基因组计划的顺利完成及我们对细胞增殖重要蛋白质作用网络生物化学特征研究的成功实施,表示细胞重要生命活动过程中功能分子的动力学特征及其调控机制显得日益重要.组建中国科学技术大学细胞动力学实验室旨在纳米尺度揭示细胞重要生命活动全过程的详尽全息分子调控机制.在过去的几年中,已取得了动点蛋白质网络研究的阶段性进展,动点蛋白复合物组分剖析、功能评估、蛋白质作用动力学及可塑性研究等方面均取得了具有特色的成绩.目前,拟在纳米尺度评估动点组装的时空动力学调控机制.相信在未来的日子里,细胞动力学实验室的创新性成果能够综合集成,并为人口与健康领域的重大命题提供相关的解答方案与技术平台.  相似文献   

14.
N6-甲基腺苷(m6A)是真核生物mRNA中最丰富的表观遗传修饰之一,在多种疾病尤其是肿瘤中发挥重要作用。m6A修饰受到甲基转移酶、去甲基化酶和RNA结合蛋白的动态调控。骨肉瘤是一种好发于儿童和青少年的恶性骨肿瘤之一,近年来骨肉瘤发生率呈上升趋势,m6A修饰的调控表达与骨肉瘤的发生发展及预后相关。本文就m6A修饰在骨肉瘤发生发展、化疗耐药、靶向治疗、预后转归的分子机制方面的研究进行综述,旨在为骨肉瘤的早期诊断和靶向治疗提供新思路。  相似文献   

15.
RGS蛋白是G蛋白信号途径的关键调节分子之一,RGS蛋白的异常表达与多种恶性肿瘤的发展相关,其中RGS4蛋白的作用鲜有报道。横纹肌肉瘤是儿童最常见的起源于原始间叶组织的恶性肿瘤,临床病例中比较常见。以培养不同代数的横纹肌肉瘤RD细胞系为材料,分别利用RT-PCR技术及Western blot技术分析了5-Aza和TSA处理下的RGS4基因mRNA水平及蛋白质水平的表达量。同时利用ChIP试验明确了RGS4基因启动子区域结合的调控蛋白。试验结果显示RGS4基因的表达存在着表观遗传调控机理,受到甲基化和乙酰化的调控,MeCP2和HDAC2分别参与RGS4基因的DNA甲基化和组蛋白乙酰化调控,研究结果表明RGS4基因的表达与横纹肌肉瘤的产生相关,本试验为进一步研究横纹肌肉瘤的产生机理奠定了基础。  相似文献   

16.
MEN1基因是多发性内分泌肿瘤1型综合征(MEN1)的关键致病基因之一.其编码蛋白menin在细胞核中与混合谱系淋巴瘤基因(MLL)等大量关键转录因子相互作用,直接参与组蛋白甲基化修饰等表观遗传调控过程,对靶基因转录和细胞表型的维持起关键的调控作用.MEN1基因突变导致的menin表达或核转位异常将引起一系列信号通路紊乱,进而引起内分泌系统疾病如MEN1.近年来,随着研究的深入,发现menin参与调控的组蛋白3的赖氨酸4残基(H3K4)甲基化修饰与内分泌系统肿瘤以及非内分泌系统如血液系统肿瘤的发生密切相关;我们最近的研究结果显示,menin通过赖氨酸27残基(H3K27)组蛋白甲基化修饰调控的多效生长因子等关键信号通路是调节肺癌表型的重要机制之一,提示menin在内分泌系统之外的广泛的生物学作用.综述了本实验室及国际上关于menin生物学功能的经典及最近的研究,重点介绍menin在非内分泌系统肿瘤发生发展中的关键作用及其调控的组蛋白修饰特点、规律.同时根据我们新近的研究,提出menin在其他系统疾病发生中的可能作用.这些新发现将有助于进一步深入揭示menin介导的表观遗传学调控在疾病发生中的关键作用,为以menin为靶点的疾病治疗提供崭新思路.  相似文献   

17.
 组蛋白修饰作为重要的表观遗传修饰,在调控胚胎基因表达、胚胎细胞的命运决定及胚胎基因组的稳定性等方面均起了很重要的作用。微量测序技术的发展使从全基因组水平上检测植入前胚胎的组蛋白修饰成为可能。综述了近年来利用该技术对小鼠早期胚胎发育过程中的组蛋白甲基化修饰研究的最新进展,总结了在胚胎基因激活及第一次细胞分化过程中组蛋白H3K4me3和H3K27me3修饰不同的建立和动态变化趋势,这些研究为探索胚胎发育和细胞分化的表观调控机制奠定了基础。  相似文献   

18.
由发育和胁迫条件所导致的基因表达的变化通常依赖于DNA的甲基化修饰、组蛋白修饰、染色质结构以及小RNA等表观修饰。大量研究表明,这种表观修饰在胁迫条件下植物基因的表达中起非常重要的作用。大部分这种由胁迫诱导产生的修饰变化在胁迫条件被解除后能重新回到原来的水平,也有一些修饰的变化十分稳定,这些修饰变化作为"胁迫记忆"可以通过有丝分裂和减数分裂被遗传。表观遗传的应激记忆可能帮助植物更有效地应对以后的胁迫。  相似文献   

19.
DNA甲基化作为重要的表观遗传修饰,在动植物生长发育过程中发挥着重要作用,一直是表观遗传学的研究热点.然而,有关DNA甲基化在昆虫生长发育及环境响应过程中的功能及调控机制尚不明确.针对目前已鉴定到的昆虫DNA甲基转移酶的种类及其结构、DNA甲基化作用方式及调控机制、昆虫DNA甲基化相关研究方法等进行综述,以期为后续深入了解昆虫及其他节肢动物的表观遗传调控机制提供参考.  相似文献   

20.
丝状真菌尤其是青霉菌Penicillium代谢的各类次级产物日趋成为研制新药的重要来源,很多药物如抗癌药物、抗生素、免疫抑制剂等均来源于真菌。然而真菌次级代谢受多因素的影响,其中表观遗传修饰起到重要的调控作用。组蛋白乙酰化表观遗传修饰常与转录激活相关,从而促进次级代谢产物的合成。以青霉属真菌Penicillium christenseniae SD-193.84为研究对象,利用生物信息学手段确定其组蛋白去乙酰化酶(HDAC)基因,建立该菌中同源重组基因敲除技术,对该基因进行敲除,并比较了基因敲除前后次级代谢产物的变化,发现HDAC影响了多种次级代谢产物的合成。本研究为青霉菌分子遗传操作及次级代谢调控提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号