首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
A Artola  S Br?cher  W Singer 《Nature》1990,347(6288):69-72
In the hippocampus and neocortex, high-frequency (tetanic) stimulation of an afferent pathway leads to long-term potentiation (LTP) of synaptic transmission. In the hippocampus it has recently been shown that long-term depression (LTD) of excitatory transmission can also be induced by certain combinations of synaptic activation. In most hippocampal and all neocortical pathways studied so far, the induction of LTP requires the activation of N-methyl-D-aspartate (NMDA) receptor-gated conductances. Here we report that LTD can occur in neurons of slices of the rat visual cortex and that the same tetanic stimulation can induce either LTP or LTD depending on the level of depolarization of the postsynaptic neuron. By applying intracellular current injections or pharmacological disinhibition to modify the depolarizing response of the postsynaptic neuron to tetanic stimulation, we show that the mechanisms of induction of LTD and LTP are both postsynaptic. LTD is obtained if postsynaptic depolarization exceeds a critical level but remains below a threshold related to NMDA receptor-gated conductances, whereas LTP is induced if this second threshold is reached.  相似文献   

2.
W G Regehr  D W Tank 《Nature》1990,345(6278):807-810
In the CA1 hippocampal region, intracellular calcium is a putative second messenger for the induction of long-term potentiation (LTP), a persistent increase of synaptic transmission produced by high frequency afferent fibre stimulation. Because LTP in this region is blocked by the NMDA (N-methyl-D-aspartate) receptor antagonist AP5 (DL-2-amino-5-phosphonovaleric acid) and the calcium permeability of NMDA receptors is controlled by a voltage-dependent magnesium block, a model has emerged that suggests that the calcium permeability of NMDA receptor-coupled ion channels is the biophysical basis for LTP induction. We have performed microfluorometric measurements in individual CA1 pyramidal cells during stimulus trains that induce LTP. In addition to a widespread component of postsynaptic calcium accumulation previously described, we now report that brief high frequency stimulus trains produce a transient component spatially localized to dendritic areas near activated afferents. This localized component is blocked by the NMDA receptor antagonist AP5. The results directly confirm the calcium rise predicted by NMDA receptor models of LTP induction.  相似文献   

3.
NMDA application potentiates synaptic transmission in the hippocampus   总被引:13,自引:0,他引:13  
J A Kauer  R C Malenka  R A Nicoll 《Nature》1988,334(6179):250-252
The NMDA (N-methyl-D-aspartate) class of glutamate receptor plays a critical role in a variety of forms of synaptic plasticity in the vertebrate central nervous system. One extensively studied example of plasticity is long-term potentiation (LTP), a remarkably long-lasting enhancement of synaptic efficiency induced in the hippocampus by brief, high-frequency stimulation of excitatory synapses. LTP is a strong candidate for a cellular mechanism of learning and memory. The site of LTP induction appears to be the postsynaptic cell and induction requires both activation of NMDA receptors by synaptically released glutamate and depolarization of the postsynaptic membrane. It is proposed that this depolarization relieves a voltage-dependent Mg2+ block of the NMDA receptor channel, resulting in increased calcium influx which is the trigger for the induction of LTP. This model predicts that application of a large depolarizing dose of NMDA should be sufficient to evoke LTP. In agreement with a previous study, we have found that NMDA or glutamate application does potentiate synaptic transmission in the hippocampus. This agonist-induced potentiation is, however, decremental and short-lived, unlike LTP. It is occluded shortly after the induction of LTP and a similar short-term potentiation can be evoked by synaptically released glutamate. We thus propose that LTP has two components, a short-term, decremental component which can be mimicked by NMDA receptor activation, and a long-lasting, non-decremental component which, in addition to requiring activation of NMDA receptors, requires stimulation of presynaptic afferents.  相似文献   

4.
Long-term potentiation (LTP) in the hippocampus is widely studied as the mechanisms involved in its induction and maintenance are believed to underlie fundamental properties of learning and memory in vertebrates. Most synapses that exhibit LTP use an excitatory amino-acid neurotransmitter that acts on two types of receptor, the N-methyl-D-aspartate (NMDA) and quisqualate receptors. The quisqualate receptor mediates the fast synaptic response evoked by low-frequency stimulation, whereas the NMDA receptor system is activated transiently by tetanic stimulation, leading to the induction of LTP. The events responsible for maintaining LTP once it is established are not known. We now demonstrate that the sensitivity of CA1 neurons in hippocampal slices to ionophoretically-applied quisqualate receptor ligands slowly increases following the induction of LTP. This provides direct evidence for a functional post-synaptic change and suggests that pre-synaptic mechanisms also contribute, but in a temporally distinct manner, to the maintenance of LTP.  相似文献   

5.
Neurotransmission at most excitatory synapses in the brain operates through two types of glutamate receptor termed alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors; these mediate the fast and slow components of excitatory postsynaptic potentials respectively. Activation of NMDA receptors can also lead to a long-lasting modification in synaptic efficiency at glutamatergic synapses; this is exemplified in the CA1 region of the hippocampus, where NMDA receptors mediate the induction of long-term potentiation (LTP). It is believed that in this region LTP is maintained by a specific increase in the AMPA receptor-mediated component of synaptic transmission. We now report, however, that a pharmacologically isolated NMDA receptor-mediated synaptic response can undergo robust, synapse-specific LTP. This finding has implications for neuropathologies such as epilepsy and neurodegeneration, in which excessive NMDA receptor activation has been implicated. It adds fundamentally to theories of synaptic plasticity because NMDA receptor activation may, in addition to causing increased synaptic efficiency, directly alter the plasticity of synapses.  相似文献   

6.
Humeau Y  Shaban H  Bissière S  Lüthi A 《Nature》2003,426(6968):841-845
The induction of associative synaptic plasticity in the mammalian central nervous system classically depends on coincident presynaptic and postsynaptic activity. According to this principle, associative homosynaptic long-term potentiation (LTP) of excitatory synaptic transmission can be induced only if synaptic release occurs during postsynaptic depolarization. In contrast, heterosynaptic plasticity in mammals is considered to rely on activity-independent, non-associative processes. Here we describe a novel mechanism underlying the induction of associative LTP in the lateral amygdala (LA). Simultaneous activation of converging cortical and thalamic afferents specifically induced associative, N-methyl-D-aspartate (NMDA)-receptor-dependent LTP at cortical, but not at thalamic, inputs. Surprisingly, the induction of associative LTP at cortical inputs was completely independent of postsynaptic activity, including depolarization, postsynaptic NMDA receptor activation or an increase in postsynaptic Ca2+ concentration, and did not require network activity. LTP expression was mediated by a persistent increase in the presynaptic probability of release at cortical afferents. Our study shows the presynaptic induction and expression of heterosynaptic and associative synaptic plasticity on simultaneous activity of converging afferents. Our data indicate that input specificity of associative LTP can be determined exclusively by presynaptic properties.  相似文献   

7.
L M Grover  T J Teyler 《Nature》1990,347(6292):477-479
Long-term potentiation (LTP) of excitatory synaptic transmission could be a mechanism underlying memory. Induction of LTP requires Ca2+ influx into postsynaptic neurons through ion channels gated by NMDA (N-methyl-D-aspartate) receptors in hippocampus (area CA1 and dentate gyrus) and neocortex. Here we report that a component of LTP not requiring the activation of NMDA receptors can be induced in area CA1. The component is dependent on tetanus frequency, requires increases in postsynaptic intracellular Ca2+ concentrations, and is suppressed by an antagonist of voltage-dependent Ca2+ channels.  相似文献   

8.
GABA autoreceptors regulate the induction of LTP.   总被引:19,自引:0,他引:19  
Understanding the mechanisms involved in long-term potentiation (LTP) should provide insights into the cellular and molecular basis of learning and memory in vertebrates. It has been established that in the CA1 region of the hippocampus the induction of LTP requires the transient activation of the N-methyl-D-aspartate (NMDA) receptor system. During low-frequency transmission, significant activation of this system is prevented by gamma-aminobutyric acid (GABA) mediated synaptic inhibition which hyperpolarizes neurons into a region where NMDA receptor-operated channels are substantially blocked by Mg2+ (refs. 5, 6). But during high-frequency transmission, mechanisms are evoked that provide sufficient depolarization of the postsynaptic membrane to reduce this block and thereby permit the induction of LTP. We now report that this critical depolarization is enabled because during high-frequency transmission GABA depresses its own release by an action on GABAB autoreceptors, which permits sufficient NMDA receptor activation for the induction of LTP. These findings demonstrate a role for GABAB receptors in synaptic plasticity.  相似文献   

9.
The phenomenon of long-term potentiation (LTP), a long lasting increase in the strength of synaptic transmission which is due to brief, repetitive activation of excitatory afferent fibres, is one of the most striking examples of synaptic plasticity in the mammalian brain. In the CA1 region of the hippocampus, the induction of LTP requires activation of NMDA (N-methyl-D-aspartate) receptors by synaptically released glutamate with concomitant postsynaptic membrane depolarization. This relieves the voltage-dependent magnesium block of the NMDA-receptor ion channel, allowing calcium to flow into the dendritic spine. Although calcium has been shown to be a necessary trigger for LTP (refs 11, 12), little is known about the immediate biochemical processes that are activated by calcium and are responsible for LTP. The most attractive candidates have been calcium/calmodulin-dependent protein kinase II (CaM-KII) (refs 13-16), protein kinase C (refs 17-19), and the calcium-dependent protease, calpain. Extracellular application of protein kinase inhibitors to the hippocampal slice preparation blocks the induction of LTP (refs 21-23) but it is unclear whether this is due to a pre- and/or postsynaptic action. We have found that intracellular injection into CA1 pyramidal cells of the protein kinase inhibitor H-7, or of the calmodulin antagonist calmidazolium, blocks LTP. Furthermore, LTP is blocked by the injection of synthetic peptides that are potent calmodulin antagonists and inhibit CaM-KII auto- and substrate phosphorylation. These findings demonstrate that in the postsynaptic cell both activation of calmodulin and kinase activity are required for the generation of LTP, and focus further attention on the potential role of CaM-KII in LTP.  相似文献   

10.
L Aniksztejn  Y Ben-Ari 《Nature》1991,349(6304):67-69
Long-term potentiation (LTP) of synaptic transmission in the hippocampus is a widely studied model of memory processes. In the CA1 region, LTP is triggered by the entry of Ca2+ through N-methyl-D-aspartate (NMDA) receptor channels and maintained by the activation of Ca2(+)-sensitive intracellular messengers. We now report that in CA1, a transient block by tetraethylammonium of IC, IM and the delayed rectifier (IK) produces a Ca2(+)-dependent NMDA-independent form of LTP. Our results suggest that this new form of LTP (referred as to LTPK) is induced by a transient enhanced release of glutamate which generates a depolarization by way of the non-NMDA receptors and the consequent activation of voltage-dependent Ca2+ channels.  相似文献   

11.
Nugent FS  Penick EC  Kauer JA 《Nature》2007,446(7139):1086-1090
Excitatory brain synapses are strengthened or weakened in response to specific patterns of synaptic activation, and these changes in synaptic strength are thought to underlie persistent pathologies such as drug addiction, as well as learning. In contrast, there are few examples of synaptic plasticity of inhibitory GABA (gamma-aminobutyric acid)-releasing synapses. Here we report long-term potentiation of GABA(A)-mediated synaptic transmission (LTP(GABA)) onto dopamine neurons of the rat brain ventral tegmental area, a region required for the development of drug addiction. This novel form of LTP is heterosynaptic, requiring postsynaptic NMDA (N-methyl-d-aspartate) receptor activation at glutamate synapses, but resulting from increased GABA release at neighbouring inhibitory nerve terminals. NMDA receptor activation produces nitric oxide, a retrograde signal released from the postsynaptic dopamine neuron. Nitric oxide initiates LTP(GABA) by activating guanylate cyclase in GABA-releasing nerve terminals. Exposure to morphine both in vitro and in vivo prevents LTP(GABA). Whereas brief treatment with morphine in vitro blocks LTP(GABA) by inhibiting presynaptic glutamate release, in vivo exposure to morphine persistently interrupts signalling from nitric oxide to guanylate cyclase. These neuroadaptations to opioid drugs might contribute to early stages of addiction, and may potentially be exploited therapeutically using drugs targeting GABA(A) receptors.  相似文献   

12.
Kainate receptors are involved in synaptic plasticity   总被引:21,自引:0,他引:21  
The ability of synapses to modify their synaptic strength in response to activity is a fundamental property of the nervous system and may be an essential component of learning and memory. There are three classes of ionotropic glutamate receptor, namely NMDA (N-methyl-D-aspartate), AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid) and kainate receptors; critical roles in synaptic plasticity have been identified for two of these. Thus, at many synapses in the brain, transient activation of NMDA receptors leads to a persistent modification in the strength of synaptic transmission mediated by AMPA receptors. Here, to determine whether kainate receptors are involved in synaptic plasticity, we have used a new antagonist, LY382884 ((3S, 4aR, 6S, 8aR)-6-((4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydro isoquinoline-3-carboxylic acid), which antagonizes kainate receptors at concentrations that do not affect AMPA or NMDA receptors. We find that LY382884 is a selective antagonist at neuronal kainate receptors containing the GluR5 subunit. It has no effect on long-term potentiation (LTP) that is dependent on NMDA receptors but prevents the induction of mossy fibre LTP, which is independent of NMDA receptors. Thus, kainate receptors can act as the induction trigger for long-term changes in synaptic transmission.  相似文献   

13.
A M Thomson  V E Walker  D M Flynn 《Nature》1989,338(6214):422-424
One class of excitatory amino-acid receptors, the N-methyl-D-aspartate (NMDA) receptors, mediates transmission at a small, but important, group of synapses in the neocortex. These receptors are implicated in neuronal plasticity during development in young mammals and in memory acquisition in adults. Recently, responses of isolated membrane patches to NMDA were shown to be greatly enhanced by glycine. This, together with the demonstration that the strychnine-insensitive glycine-binding site is distinct from, but linked to, the NMDA receptor has excited intense interest in glycine as a synaptic modulator. Before proposing a physiological function, however, it is important to determine whether glycine could enhance synaptic responses to NMDA receptor activation in intact, adult tissue. An earlier study failed to demonstrate enhancement of NMDA responses when glycine was applied and it was proposed that in intact tissue the high-affinity glycine site was already saturated by endogenous glycine. It remained possible that glycine concentrations can be maintained at low levels close to synaptic receptors. We have examined responses of neurons in slices of adult neocortex to focal applications of excitatory amino acids and glycine and report enhancement by glycine of NMDA receptor-mediated excitatory postsynaptic potentials.  相似文献   

14.
Lee HK  Barbarosie M  Kameyama K  Bear MF  Huganir RL 《Nature》2000,405(6789):955-959
Bidirectional changes in the efficacy of neuronal synaptic transmission, such as hippocampal long-term potentiation (LTP) and long-term depression (LTD), are thought to be mechanisms for information storage in the brain. LTP and LTD may be mediated by the modulation of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazloe proprionic acid) receptor phosphorylation. Here we show that LTP and LTD reversibly modify the phosphorylation of the AMPA receptor GluR1 subunit. However, contrary to the hypothesis that LTP and LTD are the functional inverse of each other, we find that they are associated with phosphorylation and dephosphorylation, respectively, of distinct GluR1 phosphorylation sites. Moreover, the site modulated depends on the stimulation history of the synapse. LTD induction in naive synapses dephosphorylates the major cyclic-AMP-dependent protein kinase (PKA) site, whereas in potentiated synapses the major calcium/calmodulin-dependent protein kinase II (CaMKII) site is dephosphorylated. Conversely, LTP induction in naive synapses and depressed synapses increases phosphorylation of the CaMKII site and the PKA site, respectively. LTP is differentially sensitive to CaMKII and PKA inhibitors depending on the history of the synapse. These results indicate that AMPA receptor phosphorylation is critical for synaptic plasticity, and that identical stimulation conditions recruit different signal-transduction pathways depending on synaptic history.  相似文献   

15.
Acidic amino acids, such as l-glutamate, are believed to be excitatory neurotransmitters in the mammalian brain and exert effects on several different receptors named after the selective agonists kainate, quisqualate and N-methyl-D-aspartate (NMDA). The first two receptors collectively termed non-NMDA receptors, have been implicated in the mediation of synaptic transmission in many excitatory pathways in the central nervous system (CNS), whereas NMDA receptors, with few exceptions do not appear to be involved; this is typified in the hippocampus where there is a high density of NMDA receptors yet selective NMDA receptor antagonists, such as D-2-amino-5-phosphonovalerate (APV), do not affect synaptic potentials. NMDA receptors have, however, been shown to be involved in long-term potentiation (LTP) in the hippocampus, a form of synaptic plasticity which may be involved in learning and memory. NMDA receptors have also been found to contribute to epileptiform activity in this region. We now describe how NMDA receptors can participate during high-frequency synaptic transmission in the hippocampus, their involvement during low-frequency transmission being greatly suppressed by Mg2+. A frequency dependent alleviation of this blockade provides a novel synaptic mechanism whereby a single neurotransmitter can transmit very different information depending on the temporal nature of the input. This mechanism could account for the involvement of NMDA receptors in the initiation of LPT and their contribution, in part, to epileptic activity.  相似文献   

16.
J H Williams  M L Errington  M A Lynch  T V Bliss 《Nature》1989,341(6244):739-742
Long-term potentiation (LTP) is a widely studied model of the synaptic basis of information storage in the mammalian brain. The induction of LTP is triggered by the postsynaptic entry of calcium through the channel associated with the N-methyl-D-aspartate (NMDA) receptor, whereas its maintenance is mediated, at least in part, by presynaptic mechanisms. To explain how postsynaptic events can lead to an increase in transmitter release, we have postulated the existence of a retrograde messenger to carry information from the postsynaptic side of the synapse to recently active presynaptic terminals. Candidates for a retrograde messenger include arachidonic acid or one of its lipoxygenase metabolites. Here we report that weak activation of the perforant path, when given in the presence of arachidonic acid, leads to a slow-onset persistent increase in synaptic efficacy both in vivo and in vitro. The activity-dependent potentiation thus produced is accompanied by an increase in the release of glutamate, and is non-additive with tetanus-induced LTP. These observations indicate a role for arachidonic acid as a retrograde messenger in the later, but not the initial, stages of LTP.  相似文献   

17.
Persistent protein kinase activity underlying long-term potentiation   总被引:41,自引:0,他引:41  
R Malinow  D V Madison  R W Tsien 《Nature》1988,335(6193):820-824
Long-term potentiation (LTP) of synaptic transmission in the hippocampus is a much-studied example of synaptic plasticity. Although the role of N-methyl-D-aspartate (NMDA) receptors in the induction of LTP is well established, the nature of the persistent signal underlying this synaptic enhancement is unclear. Involvement of protein phosphorylation in LTP has been widely proposed, with protein kinase C (PKC) and calcium-calmodulin kinase type II (CaMKII) as leading candidates. Here we test whether the persistent signal in LTP is an enduring phosphoester bond, a long-lived kinase activator, or a constitutively active protein kinase by using H-7, which inhibits activated protein kinases and sphingosine, which competes with activators of PKC (ref. 17) and CaMKII (ref. 18). H-7 suppressed established LTP, indicating that the synaptic potentiation is sustained by persistent protein kinase activity rather than a stably phosphorylated substrate. In contrast, sphingosine did not inhibit established LTP, although it was effective when applied before tetanic stimulation. This suggests that persistent kinase activity is not maintained by a long-lived activator, but is effectively constitutive. Surprisingly, the H-7 block of LTP was reversible; evidently, the kinase directly underlying LTP remains activated even though its catalytic activity is interrupted indicating that such kinase activity does not sustain itself simply through continual autophosphorylation (see refs 9, 13, 15).  相似文献   

18.
A Dumuis  M Sebben  L Haynes  J P Pin  J Bockaert 《Nature》1988,336(6194):68-70
Receptors for excitatory amino-acid transmitters on nerve cells fall into two main categories associated with non-selective cationic channels, the NMDA (N-methyl-D-aspartate) and non-NMDA (kainate and quisqualate) receptors. Special properties of NMDA receptors such as their voltage-dependent blockade by Mg2+ (refs 3, 4) and their permeability to Na+, K+ as well as to Ca2+ (refs 5, 6), have led to the suggestion that these receptors are important in plasticity during development and learning. They have been implicated in long-term potentiation (LTP), a model for the study of the cellular mechanisms of learning. We report here that glutamate and NMDA, acting at typical NMDA receptors, stimulate the release of arachidonic acid (as well as 11- and 12-hydroxyeicosatetraenoic acids from striatal neurons probably by stimulation of a Ca2+-dependent phospholipase A2. Kainate and quisqualate, as well as K+-induced depolarization were ineffective. Our results provide direct evidence in favour of the hypothesis, that arachidonic acid derivatives, produced by activation of the postsynaptic cell, could be messengers that cross the synaptic cleft to modify the presynaptic functions known to be altered during LTP. In addition, we suggest that NMDA receptors are the postsynaptic receptors which trigger the synthesis of these putative transynaptic messengers.  相似文献   

19.
Glycine potentiates the NMDA response in cultured mouse brain neurons   总被引:46,自引:0,他引:46  
J W Johnson  P Ascher 《Nature》1987,325(6104):529-531
Transmitters mediating 'fast' synaptic processes in the vertebrate central nervous system are commonly placed in two separate categories that are believed to exhibit no interaction at the receptor level. The 'inhibitory transmitters' (such as glycine and GABA) are considered to act only on receptors mediating a chloride conductance increase, whereas 'excitatory transmitters' (such as L-glutamate) are considered to activate receptors mediating a cationic conductance increase. The best known excitatory receptor is that specifically activated by N-methyl-D-aspartate (NMDA) which has recently been characterized at the single channel level. The response activated by NMDA agonists is unique in that it exhibits a voltage-dependent Mg block. We report here that this response exhibits another remarkable property: it is dramatically potentiated by glycine. This potentiation is not mediated by the inhibitory strychnine-sensitive glycine receptor, and is detected at a glycine concentration as low as 10 nM. The potentiation can be observed in outside-out patches as an increase in the frequency of opening of the channels activated by NMDA agonists. Thus, in addition to its role as an inhibitory transmitter, glycine may facilitate excitatory transmission in the brain through an allosteric activation of the NMDA receptor.  相似文献   

20.
目的:研究酒精对大鼠外侧穿通纤维(lateral perforant path,LPP)-CA3区(LPP-CA3)长时程增强(long-term potentiation,LTP)诱导阶段的影响及可能的机制.方法:用细胞外电生理记录方法,通过向海马CA3区分别微量注射酒精(Alcohol)、阿片受体拮抗剂纳洛酮(naloxone)和GABAA受体拮抗剂荷包牡丹碱(bicucul-line,BIC),以海马CA3区群体兴奋性突触后电位(field excitory postsynaptic potentials,fEPSP)斜率改变为指标,观察高频刺激引起的LTP诱导的变化.结果:①酒精剂量依赖性地抑制LTP的诱导;②纳洛酮和BIC均可以部分减轻酒精对LTP诱导的抑制作用.结论:内源性阿片系统和GABA能系统参与了酒精对LPP-CA3通路LTP诱导的调制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号