首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
随着环境恶化问题日益突出及各种传染疾病暴发事件频发,国外特别是日本掀起了一场对生活用品和环境的抗菌除臭防霉热潮,抗菌产品的应用已从传统的医疗、卫生领域扩展到皮革、建材、木材、涂料、粘结剂、塑料、薄膜、陶资、纸张、金属加工、食品、  相似文献   

2.
離子交換法制備載銀沸石抗菌劑及其性能研究   总被引:1,自引:0,他引:1  
以酸活化沸石為載體,AgNO3為反應液,通過離子交換法制備載銀沸石抗菌劑.采取正交試驗法研究了制備工藝對抗菌劑載銀量及抗菌性能的影響.結果發現沸石的酸化是重要的影響因素,其次是AgNO3的濃度、反應溫度和時間.試驗表明,最佳的制備工藝條件為:活化酸度(HCl)1.5 mol/L,AgNO3濃度0.5 mol/L,反應溫度50℃,反應時間2 h.通過最佳的制備工藝條件制備載銀沸石抗菌劑的載銀量為2.40%,這種抗菌劑具有良好的抗菌性能.  相似文献   

3.
海泡石载银抗菌剂的制备研究   总被引:10,自引:0,他引:10  
研究以海泡石作为载体,制备载银抗菌剂的实验工艺。实验结果表明:酸的活化浓度、活化温度、活化时间对海泡石吸附Ag^ 的能力影响较大;制备海泡石载银抗菌剂的实验参数为,盐酸的活化浓度1、25mol/L、活化温度95℃、活化时间2h、离子吸附时间6h。  相似文献   

4.
天然电气石载银抗菌剂的研究   总被引:1,自引:0,他引:1  
研究了以天然电气石为载体,采用离子交换和固相合成法来制备抗菌剂的实验工艺.结果表明,烧结温度,以及银离子掺杂量对以天然电气石为载体的抗菌粉体的抗菌性能有较大影响.制备天然电气石载银抗菌剂的优化实验参数为:热处理温度为800℃,保温时间为2 h.  相似文献   

5.
以蒙脱石为载体,采用溶胶-凝胶法制备粉体纳米二氧化钛,并且以成品纳米二氧化钛与蒙脱石复合进行对比,通过离子交换反应将银离子引入蒙脱石层间。考察了制备纳米二氧化钛过程中乙醇用量、温度、p H值以及滴加方式等影响因素。考察了制备掺银纳米二氧化钛蒙脱石过程中温度、离子交换时间、硝酸银用量等影响因素。实验采用佛尔哈德法间接测定载银量。实验表明:在反应温度40℃条件下反应6 h时制备出的载银自制纳米二氧化钛蒙脱石载银量为质量分数1.8%,载银成品纳米二氧化钛蒙脱石载银量质量分数为2.6%;红外分析表明二氧化钛可以实现与蒙脱石的复合;X射线衍射法测定结果表明,载银对纳米二氧化钛蒙脱石骨架结构无影响;催化活性表明,载银提高了二氧化钛蒙脱石的催化活性。  相似文献   

6.
载银无机抗菌剂及其应用   总被引:8,自引:0,他引:8  
着重介绍了载银无机抗菌剂的抗菌机理、性能指标.目前关于其抗菌机理有两种观点:(1)通过缓释Ag^ 发挥持久的抗菌效果;(2)银作为催化活性中心,产生具有很强的氧化还原作用的羟基自由基及活性氧离子,从而抑制或杀灭细菌.抗菌剂的性能主要通过抗菌能力、安全性、细菌抗药性等指标来反映.本文还简要介绍了沸石抗菌剂、我银磷酸钙抗菌剂、抗菌性羟基磷灰石、磷酸复盐抗菌剂、可溶性玻璃抗菌剂等几种载银无机抗菌剂的生产工艺,并对载银无机抗菌剂在抗菌陶瓷制品、抗菌塑料制品、抗菌纤维制品中的应用进行了讨论.  相似文献   

7.
本文介绍用天然斜发和丝光沸石,经离子交换,接上具有杀菌性能的金属离子(Cu2+、Ag+、Zn2+),制成抗菌沸石,并且对其抗大肠杆菌和霉菌的性能进行了检验。  相似文献   

8.
无机银系列抗菌剂的特征及其应用   总被引:5,自引:0,他引:5  
介绍了几种无机抗菌剂(如磷酸锆银和银配合物系列抗菌剂等)的物理性质,化学性质和抗菌性能及在各个方面的应用。  相似文献   

9.
制备了载银羟基磷酸锆钠抗菌剂,考察了羟基磷酸锆钠载体吸附银离子过程中温度、pH值及时间对银离子吸附量的影响,以及热处理温度对抗菌剂抗菌性和耐紫外光照射性能的影响,对抗菌剂制备工艺进行了优化,制得抗菌性优异、耐紫外光照射性能较好的载银羟基磷酸锆钠抗菌剂.  相似文献   

10.
本研究我们成功地制备出磷酸锆载银抗菌复合树脂.SEM结果表明表面颗粒分散均匀.EDS分析表明磷酸锆载银抗菌剂成功地混合到复合树脂中.FT-IR分析得出了磷酸锆载银抗菌剂杜拉菲勒复合树脂初期固化率.  相似文献   

11.
 采用分子筛负载CdCl2,再与Na2S反应获得负载纳米CdS的分子筛M-CdS,将其与聚乙烯复合得到具有特殊光性能的材料PE/M-CdS。通过紫外可见吸收光谱、荧光光谱和DSC等对复合材料的光性能和结晶性能进行了表征。结果表明:PE/M-CdS复合材料在540~550 nm波长范围呈现明显的荧光发射现象,并且随着M-CdS含量增加,荧光发射峰略微红移,荧光强度先增强后减弱。紫外光谱显示复合材料在280~325 nm有明显的吸收峰,且随着M-CdS含量的增加而增强。M-CdS对PE具有异相成核作用,复合材料结晶温度提高。随M-CdS含量增加,PE结晶生长受阻,熔融热焓下降,结晶度降低。  相似文献   

12.
利用微波辅助合成聚(丙烯酸-丙烯酰胺)/沸石高吸水复合材料,研究丙烯酰胺用量、引发剂、交联剂、中和度以及沸石的添加量等对吸水倍率的影响,利用红外光谱分析高吸水材料的官能团.结果表明:当沸石、丙烯酰胺、引发剂和交联剂量分别为丙烯酸单体质量的30%、40%、0.2%和0.04%,中和度为70%时,复合材料对自来水的吸附倍率达413 g/g,对生理盐水溶液的吸水倍率达95 g/g.  相似文献   

13.
为解决高分子材料燃烧发烟问题,以沸石作载体制成复合钼酸铵抑烟剂和复合三氧化钼抑烟剂.锥形量热计法测试表明,复合抑烟剂的抑烟效果显著;力学性能测试表明,复合抑烟剂与高分子材料具有很好的相容性.复合抑烟剂性能优异的原因在于在载体中钼化物得到了充分的分散,与高分子材料充分接触,提高了钼化物的反应活性,使钼化物的抑烟性能得到了最大限度的利用;同时因载体的抑烟协同效应,增强了抑烟效果,降低了材料成本.  相似文献   

14.
以金属钛板作为阳极材料,采用阳极氧化方法制备了二氧化钛(Ti O2)纳米管,通过X射线衍射仪和扫描电子显微镜等测试,研究了制备工艺条件和超声波源对样品性能的影响.结果表明:纳米管的形貎和结晶性能与工艺参数和超声波源密切相关,退火处理能使样品由不定形相转成由锐钛矿相和金红石相组成的混合相,其生长速度、管径和管壁厚度明显受到阳极氧化时平均电流密度的影响.氧化电压为60 V时所制备Ti O2纳米管样品的管径为90 nm、管壁厚度为21 nm、长度为8μm.  相似文献   

15.
玉米淀粉醋酸酯的制备与物性研究   总被引:4,自引:0,他引:4  
以玉米淀粉为原料、醋酸酐为改性剂,在水相体系中、碱性条件下合成了低取代度的玉米淀粉醋酸酯。通过红外光谱分析验证了该反应的发生,并探讨了反应介质酸度、温度、时间等反应条件对产品取代度的影响。对淀粉醋酸酯的性质研究表明,与原淀粉相比,玉米淀粉醋酸酯糊化液表现出黏度增加、透明度提高、凝沉性减弱的特点。  相似文献   

16.
以人造沸石为原料采用化学共沉淀方法制得磁性沸石,并对其吸附溶液中氨氮的性能进行了评价,XRD和FTIR分析表明:Fe以Fe_3O_4的形式存在于磁性沸石中;磁性沸石吸附溶液中的氨氮是一个自发的放热反应,吸附速率较快,10 min即达到吸附平衡;溶液pH 3~11时对吸附未产生明显影响,但pH低于3或高于11不利于吸附;25℃、pH为6条件下,磁性沸石对氨氮的最大吸附量为42.41 mg/g.  相似文献   

17.
明胶膜的制备及性能   总被引:3,自引:0,他引:3  
用浸涂的方法制备了明胶膜,测定了膜的机械性能、溶胀性能、对水的敏感性以及膜的含水量,并探讨了涂布温度、成膜液的pH、增塑剂甘油的添加量、交联剂的种类及添加量以及贮存环境湿度对明胶膜性能的影响。研究结果表明:用浸涂方法制备明胶膜时,w=0.12的明胶成膜液适宜的涂布温度为33~38℃;成膜液的pH在7左右时,膜的抗拉强度最大;随着增塑剂甘油用量增加,膜的抗拉强度下降,而断裂伸长率增大;交联剂甲醛和明矾都有明显的交联作用,但交联剂的添加量过多时,不适合用浸涂的方法制备膜;随着贮存湿度的增加,膜的抗拉强度和弹性模量逐渐降低,断裂伸长率和含水量呈递增趋势。  相似文献   

18.
采用溶胶-凝胶法在LaNiO3/Si衬底上制作Pb(Zr0.5,Ti0.5)O3(PZT)薄膜,研究了退火温度对薄膜结构和性能影响.通过X-ray分析表明,在600℃退火时,PZT薄膜已形成钙钛矿相,且在(100)择优取向的LaNiO3底电极上制备得到了(100)择优取向的PZT薄膜.实验测得以LaNiO3为衬底上的PZT薄膜的剩余极化强度为Pr=26.83μC/cm2,矫顽场Ec=30.43 kV/cm,介电常数为ε=5509,介电损耗为0.203.  相似文献   

19.
利用微波辅助Na OH对天然沸石进行改性,在单因素实验的基础上对改性条件进行了优化,得出沸石改性的最优实验条件为:Na OH改性液浓度为0.5 mol/L、微波功率480 W、微波辐射时间5 min.探讨改性沸石对Zn2+的吸附行为.结果表明:改性沸石对Zn2+的吸附能力明显增强.在优化实验条件下对质量浓度为50 mg/L的Zn2+的去除率达95.68%.Langmuir吸附模型比Freundlich吸附模型能更好地模拟改性沸石对Zn2+的吸附过程,吸附动力学方程以准二级动力学方程拟合的效果最优.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号