首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Summary Of particular concern to the human geneticist are the effects of genetic abnormalities on development. To gain an understanding of these effects it is necessary to engage in a reciprocal process of using knowledge of normal developmental events to elucidate the mechanisms operative in abnormal situations and then of using what is learned about these abnormal situations to expand our understanding of the normal. True developmental genes have not been described in man, although it is likely that they exist, but many developmental abnormalities are ascribable to mutations in genes coding for enzymes and structural proteins. Some of these even produce multiple malformation syndromes with dysmorphic features. These situations provide a precedent for asserting that not only monogenic developmental abnormalities, but also abnormalities resulting from chromosome imbalance must ultimately be explicable in molecular terms. However, the major problem confronted by the investigator interested in the pathogenesis of any of the chromosome anomaly syndromes is to understand how the presence of an extra set of normal genes or the loss of one of two sets of genes has an adverse effect on development. Several molecular mechanisms for which limited precedents exist may be considered on theoretical grounds. Because of the difficulties in studying developmental disorders in man, a variety of experimental systems have been employed. Particularly useful has been the mouse, which provides models for both monogenic and aneuploidy produced abnormalities of development. An example of the former is the mutation oligosyndactylism which in the heterozygous state causes oligosyndactyly and in the homozygous state causes early embryonic mitotic arrest. All whole arm trisomies and monosomies of the mouse can be produced experimentally, and of special interest is mouse trisomy 16 which has been developed as an animal model of human trisomy 21 (Down syndrome). In the long run, the most direct approach to elucidating the genetic problems of human development will involve not only the study of man himself but also of the appropriate experimental models in other species.Acknowledgments. This review was written while the author was a Henry J. Kaiser Senior Fellow at the Center for Advanced Study in the Behavioral Sciences, Palo Alto, California. This work was supported by grants from the National Institutes of Health (GM-24309, HD-03132, HD-15583, HD-17001) and the American Cancer Society (CD-119) and by a contract from the National Institute of Child Health and Human Development (NOI-HD-2858).  相似文献   

2.
Down's syndrome (DS), the most frequent of congenital birth defects, results from the trisomy of chromosome 21 in all cells of affected patients. This disease is characterized by developmental anomalies, mental retardation and features of rapid aging, particularly in the brain, where the occurrence of Alzheimer's disease is observed in trisomy 21 patients over the age of 35. Copper-zinc superoxide dismutase (CuZnSOD) is one of the proteins encoded by chromosome 21 (21q22.1). As a consequence of gene dosage excess, CuZnSOD activity is increased by 50% in all DS tissues. This work reports the SOD activity of a population of DS patients with complete trisomy 21, partial trisomy 21, translocations and mosaicism, in order to confirm the gene dosage effect of SOD on the clinical features of DS, and to help to establish which is the critical region of chromosome 21 in DS. CuZnSOD was measured in red blood cells using the Minami and Yoshikawa method. In the population with complete trisomy 21, SOD activity was increased by 42%; in the population with partial trisomy 21, translocations and mosaicism, SOD activity was normal. In the population diagnosed as DS, but not karyotyped, SOD activity was increased by 28%. No differences between sexes or among ages were found. We conclude that the 21q22.1 segment is not the critical region responsible for DS, as we have found normal SOD activity in patients with the clinical features of DS.  相似文献   

3.
DAX-1, an ‘antitestis’gene   总被引:2,自引:0,他引:2  
  相似文献   

4.
5.
Understanding the basic biology of human ageing is a key milestone in attempting to ameliorate the deleterious consequences of old age. This is an urgent research priority given the global demographic shift towards an ageing population. Although some molecular pathways that have been proposed to contribute to ageing have been discovered using classical biochemistry and genetics, the complex, polygenic and stochastic nature of ageing is such that the process as a whole is not immediately amenable to biochemical analysis. Thus, attempts have been made to elucidate the causes of monogenic progeroid disorders that recapitulate some, if not all, features of normal ageing in the hope that this may contribute to our understanding of normal human ageing. Two canonical progeroid disorders are Werner's syndrome and Hutchinson-Gilford progeroid syndrome (also known as progeria). Because such disorders are essentially phenocopies of ageing, rather than ageing itself, advances made in understanding their pathogenesis must always be contextualised within theories proposed to help explain how the normal process operates. One such possible ageing mechanism is described by the cell senescence hypothesis of ageing. Here, we discuss this hypothesis and demonstrate that it provides a plausible explanation for many of the ageing phenotypes seen in Werner's syndrome and Hutchinson-Gilford progeriod syndrome. The recent exciting advances made in potential therapies for these two syndromes are also reviewed.  相似文献   

6.
Familial hypobetalipoproteinemia (FHBL), an autosomal dominant disorder, is defined as <5th percentile LDL-cholesterol or apolipoprotein (apo) B in the plasma. FHBL subjects are generally heterozygous and asymptomatic. Three genetic forms exist: (i) premature stop codon specifying mutations of APOB; (ii) FHBL linked to a susceptibility locus on the chromosome 3p21; and (iii) FHBL linked neither to APOB nor to the chromosome 3p21. In heterozygous apoB-defective FHBL, the hepatic VLDL export system is defective because apoB 100, the product of the normal allele, is produced at ∼25% of normal rate, and truncated apoB is cleared too rapidly. The reduced capacity for hepatic triglyceride export increases hepatic fat three-fold. Indexes of adiposity and insulin action are similar to controls. ‘Knock-in’ mouse models of apoB truncations resemble human FHBL phenotypes. Liver fat in the chromosome 3p21-linked FHBL is normal. Elucidation of the genetic basis of the non-apoB FHBL could uncover attractive targets for lipid-lowering therapy. (See note added in proof.)Received 27 October 2004; received after revision 1 February 2005; accepted 22 February 2005  相似文献   

7.
8.
9.
10.
The absence of chromosome abnormalities in 50% of human acute leukemias stress the significance of cytogenetic abnormalities in malignancies. Karyotypically normal cells from acute leukemias were shown to be non leukemic cells by cytological and cytogenetic comparisons. Chromosomally normal acute promyelocytic leukemias could be explained by differences between proliferation rates of bone marrow cells and by bias when choosing metaphases to be analysed. The role of chromosomal abnormalities in acute leukemia must be therefore questioned from a new definition of cytogenetic methods.  相似文献   

11.
The brain ventricular system (BVS) consists of brain ventricles and channels connecting ventricles filled with cerebrospinal fluid (CSF). The disturbance of CSF flow has been linked to neurodegenerative disease including hydrocephalus, which manifests itself as an abnormal expansion of BVS. This relatively common developmental disorder has been observed in human and domesticated animals and linked to functional deficiency of various cells lineages facing BVS, including the choroid plexus or ependymal cells that generate CSF or the ciliated cells that cilia beating generates CSF flow. To understand the underlying causes of hydrocephalus, several animal models were developed, including rodents (mice, rat, and hamster) and zebrafish. At another side of a spectrum of BVS anomalies there is the “slit-ventricle” syndrome, which develops due to insufficient inflation of BVS. Recent advances in functional genetics of zebrafish brought to light novel genetic elements involved in development of BVS and circulation of CSF. This review aims to reveal common elements of morphologically different BVS of zebrafish as a typical representative of teleosts and other vertebrates and illustrate useful features of the zebrafish model for studies of BVS. Along this line, recent analyses of the two novel zebrafish mutants affecting different subunits of the potassium voltage-gated channels allowed to emphasize an important functional convergence of the evolutionarily conserved elements of protein transport essential for BVS development, which were revealed by the zebrafish and mouse studies.  相似文献   

12.
Activating and inactivating mutations of SHP-2 are responsible, respectively, for the Noonan (NS) and the LEOPARD (LS) syndromes. Clinically, these developmental disorders overlap greatly, resulting in the apparent paradox of similar diseases caused by mutations that oppositely influence SHP-2 phosphatase activity. While the mechanisms remain unclear, recent functional analysis of SHP-2, along with the identification of other genes involved in NS and in other related syndromes (neurofibromatosis-1, Costello and cardio-facio-cutaneous syndromes), strongly suggest that Ras/MAPK represents the major signaling pathway deregulated by SHP-2 mutants. We discuss the idea that, with the exception of LS mutations that have been shown to exert a dominant negative effect, all disease-causing mutations involved in Ras/MAPK-mediated signaling, including SHP-2, might lead to enhanced MAPK activation. This suggests that a narrow range of MAPK signaling is required for appropriate development. We also discuss the possibility that LS mutations may not simply exhibit dominant negative activity. Received 30 November 2006; received after revision 8 February 2007; accepted 13 March 2007  相似文献   

13.
Genetic and developmental defects of the mouse corpus callosum   总被引:3,自引:0,他引:3  
D Wahlsten 《Experientia》1989,45(9):828-838
Among adult BALB mice fewer than 20% usually have a small or absent corpus callosum (CC) and inheritance is polygenic. In the fetus at the time when the CC normally forms, however, almost all BALB mice show a distinct bulge in the interhemispheric fissure and grossly retarded commissure formation, and inheritance appears to result from two autosomal loci, provided the overall maturity of fetuses is equated. Most fetuses recover from the early defect when the CC axons manage to cross over the hippocampal commissure, and thus there is developmental compensation for a genetic defect rather than arrested midline development. The pattern of interhemispheric connections when the adult CC is very small is topographically normal in most respects, despite the unusual paths of the axons. The proportion of mice which fail to recover completely can be doubled by certain features of the maternal environment, and the severity of defects in adults can also be exacerbated by new genetic mutations which create new BALB substrains. The behavioral consequences of absent CC in mice are not known, nor have electrophysiological patterns been examined. The mouse provides an important model for prenatal ontogeny and cortical organization in human CC agenesis, because these data are not readily available for the human condition.  相似文献   

14.
Summary Among adult BALB mice fewer than 20% usually have a small or absent corpus callosum (CC) and inheritance is polygenic. In the fetus at the time when the CC normally forms, however, almost all BALB mice show a distinct bulge in the interhemispheric fissure and grossly retarded commissure formation, and inheritance appears to result from two autosomal loci, provided the overall maturity of fetuses is equated. Most fetuses recover from the early defect when the CC axons manage to cross over the hippocampal commissure, and thus there is developmental compensation for a genetic defect rather than arrested midline development. The pattern of interhemispheric connections when the adult CC is very small is topographically normal in most respects, despite the unusual paths of the axons. The proportion of mice which fail to recover completely can be doubled by certain features of the maternal environment, and the severity of defects in adults can also be exacerbated by new genetic mutations which create new BALB substrains. The behavioral consequences of absent CC in mice are not known, nor have electrophysiological patterns been examined. The mouse provides an important model for prenatal ontogeny and cortical organization in human CC agenesis, because these data are not readily available for the human condition.  相似文献   

15.
Obesity is a multifactorial and heterogeneous condition that results from alterations of various genes, each having a partial and additive effect. The inheritance pattern of obesity is thus complex, and environmental factors play an important role in promoting or delaying its development. The identification of susceptibility genes and genetic variants for obesity requires various methodological approaches. Obesity is classified into three main categories on the basis of genetic etiology: monogenic, syndromic, and polygenic obesity. Here we review monogenic and syndromic obesity. We also review the linkage analysis studies followed by the candidate gene approaches and genome-wide association studies. Identification of the underlying genetic causes of obesity will likely provide a basis both for the development of new therapeutic agents and for the personalized prevention of this condition. Received 2 October 2007; received after revision 15 November 2007; accepted 19 November 2007  相似文献   

16.
Hypertension (high blood pressure) is a major public health problem affecting more than a billion people worldwide with complications, including stroke, heart failure and kidney failure. The regulation of blood pressure is multifactorial reflecting genetic susceptibility, in utero environment and external factors such as obesity and salt intake. In keeping with Arthur Guyton’s hypothesis, the kidney plays a key role in blood pressure control and data from clinical studies; physiology and genetics have shown that hypertension is driven a failure of the kidney to excrete excess salt at normal levels of blood pressure. There is a number of rare Mendelian blood pressure syndromes, which have shed light on the molecular mechanisms involved in dysregulated ion transport in the distal kidney. One in particular is Familial hyperkalemic hypertension (FHHt), an autosomal dominant monogenic form of hypertension characterised by high blood pressure, hyperkalemia, hyperchloremic metabolic acidosis, and hypercalciuria. The clinical signs of FHHt are treated by low doses of thiazide diuretic, and it mirrors Gitelman syndrome which features the inverse phenotype of hypotension, hypokalemic metabolic alkalosis, and hypocalciuria. Gitelman syndrome is caused by loss of function mutations in the thiazide-sensitive Na/Cl cotransporter (NCC); however, FHHt patients do not have mutations in the SCL12A3 locus encoding NCC. Instead, mutations have been identified in genes that have revealed a key signalling pathway that regulates NCC and several other key transporters and ion channels in the kidney that are critical for BP regulation. This is the WNK kinase signalling pathway that is the subject of this review.  相似文献   

17.
Mammalian artificial chromosomes (MACs) are safe, stable, non-integrating genetic vectors with almost unlimited therapeutic transgene-carrying capacity. The combination of MAC and stem cell technologies offers a new strategy for stem cell-based therapy, the efficacy of which was confirmed and validated by using a mouse model of a devastating monogenic disease, galactocerebrosidase deficiency (Krabbe’s disease). Therapeutic MACs were generated by sequence-specific loading of galactocerebrosidase transgenes into a platform MAC, and stable, pluripotent mouse embryonic stem cell lines were established with these chromosomes. The transgenic stem cells were thoroughly characterized and used to produce chimeric mice on the mutant genetic background. The lifespan of these chimeras was increased twofold, verifying the feasibility of the development of MAC-stem cell systems for the delivery of therapeutic genes in stem cells to treat genetic diseases and cancers, and to produce cell types for cell replacement therapies. Received 29 July 2008; received after revision 22 September 2008; accepted 24 September 2008  相似文献   

18.
Chromosome 17 abnormalities are often observed in medulloblastomas (MBs), particularly those classified in the consensus Groups 3 and 4. Herein we review MB signature genes associated with chromosome 17 and the relationship of these signature genes to the ubiquitin-proteasome system. While clinical investigators have not focused on the ubiquitin-proteasome system in relation to MB, a substantial amount of data on the topic has been hidden in the form of supplemental datasets of gene expression. A supplemental dataset associated with the Thompson classification of MBs shows that a subgroup of MB with 17p deletions is characterized by reduced expression of genes for several core particle subunits of the beta ring of the proteasome (β1, β4, β5, β7). One of these genes (PSMB6, the gene for the β1 subunit) is located on chromosome 17, near the telomeric end of 17p. By comparison, in the WNT group of MBs only one core proteasome subunit, β6, associated with loss of a gene (PSMB1) on chromosome 6, was down-regulated in this dataset. The MB subgroups with the worst prognosis have a significant association with chromosome 17 abnormalities and irregularities of APC/C cyclosome genes. We conclude that the expression of proteasome subunit genes and genes for ubiquitin ligases can contribute to prognostic classification of MBs. The therapeutic value of targeting proteasome subunits and ubiquitin ligases in the various subgroups of MB remains to be determined separately for each classification of MB.  相似文献   

19.
Poly(ADP-ribose) polymerase-1 (Parp-1) and the protein deacetylase SirT1 are two of the most effective NAD+-consuming enzymes in the cell with key functions in genome integrity and chromatin-based pathways. Here, we examined the in vivo crosstalk between both proteins. We observed that the double disruption of both genes in mice tends to increase late post-natal lethality before weaning consistent with important roles of both proteins in genome integrity during mouse development. We identified increased spontaneous telomeric abnormalities associated with decreased cell growth in the absence of either SirT1 or SirT1 and Parp-1 in mouse cells. In contrast, the additional disruption of Parp-1 rescued the abnormal pericentric heterochromatin, the nucleolar disorganization and the mitotic defects observed in SirT1-deficient cells. Together, these findings are in favor of key functions of both proteins in cellular response to DNA damage and in the modulation of histone modifications associated with constitutive heterochromatin integrity.  相似文献   

20.
Up to 10% of the mouse genome is comprised of endogenous retrovirus (ERV) sequences, and most represent the remains of ancient germ line infections. Our knowledge of the three distinct classes of ERVs is inversely correlated with their copy number, and their characterization has benefited from the availability of divergent wild mouse species and subspecies, and from ongoing analysis of the Mus genome sequence. In contrast to human ERVs, which are nearly all extinct, active mouse ERVs can still be found in all three ERV classes. The distribution and diversity of ERVs has been shaped by host-virus interactions over the course of evolution, but ERVs have also been pivotal in shaping the mouse genome by altering host genes through insertional mutagenesis, by adding novel regulatory and coding sequences, and by their co-option by host cells as retroviral resistance genes. We review mechanisms by which an adaptive coexistence has evolved. (Part of a Multiauthor Review)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号