首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The zonal displacement of the western Pacific subtropical high remarkably influences the climate anomalies in China. In this paper, a new zonal index of the subtropical high is defined by modifying previous indices, and is used to investigate the relationship between the zonal displacement of the subtropical high and the dominant modes of 850-hPa circulations. It is found that the zonal displacement of the subtropical high is significantly correlated with the first two leading modes of circulations. In particular, the correlation coefficient between the index and the time series associated with the second mode is as high as 0.78 in 1958-2003 (46 years). Since the second mode is not associated with significant anomalies of sea surface temperatures, the above results imply the difficulty in seasonal forecasting of the zonal displacement for the subtropical high. In addition, the interannual variability in the zonal displacement of the subtropical high is considerably enhanced since 1978, due to the effects of both dominant modes, especially the second mode. This is likely to account for the frequent occurrence of anomalous climate in China during the recent two decades.  相似文献   

2.
This article concerns the temperature anomalies during the high index phase of the northern annual mode for the wintertime from January to March, The response of the zonal and meridional winds and the temperature advection caused by the anomalous horizontal wind are investigated. The results show that both the zonal and meridional winds experience strong anomalies and the temperature advection induced by both the anomalous zonal and meridional winds is responsible for the temperature anomalies associated with the high index northern annual mode. The temperature advection induced by the anomalous zonal wind contributes dominantly to the cooling in the Atlantic and the Bering Sea while the temperature advection induced by the anomalous merional wind contributes dominantly the warming in the United States of America and the cooling in southern Europe and Canada. The superposed influences caused the obvious warming in north Eurasia.  相似文献   

3.
Observational study indicated that the summer precipitation over Eastern China experienced a notable interdecadal change around the late-1990s. Accompanying this interdecadal change, the dominant mode of anomalous precipitation switched from a meridional triple pattern to a dipole pattern, showing a "south-flood-north-drought" structure (with the exception of the Yangtze River Valley). This interdecadal change of summer precipitation over Eastern China was associated with circulation anomalies in the middle/upper troposphere over East Asia, such as changes in winds and corresponding divergence, vertical motion and moisture transportation (divergence), which all exhibit remarkable meridional dipole structures. Furthermore, on the internal dynamic and thermodynamic aspects, the present study investigated the influence of the midtroposphere zonal and meridional flow changes over East Asia on the interdecadal change around the late-1990s. Results suggested that, during 1999-2010, the East Asia subtropical westerly jet weakened and shifted poleward, forming a meridional dipole feature in anomalous zonal flow. This anomalous zonal flow, on one hand, induced changes in three teleconnection patterns over the Eurasian continent, namely the "Silk Road" pattern along the subtropical upper troposphere westerly jet, the East Asia/Pacific (EAP) pattern along the East Asian coast, and the Eurasia (EU) pattern along the polar jet; on the other hand, it brought about cold advection over Northern China, and warm advection over Southern China in the mid-troposphere. Through these two ways, the changes in the zonal flow induced descent over Northern China and ascent over Southern China, which resulted in the anomalous "south-flood-north-drought" feature of the summer precipitation over Eastern China during 1999-2010.  相似文献   

4.
With the warm/cold phases of the El Ni o and Southern Oscillation (ENSO) as a background, the impacts of monthly variation in the Arctic Oscillation (AO) on the winter climate anomalies in East Asia are studied with the NCEP/DOE Reanalysis 2 data and the Chinese station data regarding temperature and rainfall. The combined effects of ENSO and the AO indicate that the winter climate anomalies are mainly influenced by the AO in northern China and the ENSO in southern China, when an El Ni o couples with a negative AO month or a La Ni a couples with a positive AO month. These climate anomalies in China are consistent with the mechanisms proposed in previous studies. However, most of China presents a different pattern of climate anomalies if an El Ni o couples with a positive AO month or a La Ni a couples with a negative AO month, with the exception of the temperature anomalies in northern China, which are still affected dominantly by the AO. Further analysis suggests that the causes are attributed to the differences in both the stratosphere-troposphere interaction and the extratropics-tropics interaction. In the former cases, zonal symmetric circulation prevails in the winter and the extratropics-tropics interaction is weakened. Thus, the influences of the ENSO and the AO on the East Asian climate mainly present linear combination effects. On the contrary, an annular mode of atmospheric circulation is not favored in the latter cases and the extratropics-tropics interaction is strong. Hence, the combined effects of the ENSO and the AO on the winter climate in East Asia present nonlinear characteristics.  相似文献   

5.
不同平均强度热盐环流的年代际波动特征   总被引:2,自引:0,他引:2       下载免费PDF全文
基于美国国家大气研究中心的CCSM3(community climate system model version 3)模式,对淡水扰动试验下不同平均强度热盐环流(thermohline circulation,THC)的年代际波动特征及北大西洋气候响应特征进行研究。结果表明,百年以上尺度的THC变化对其年代际尺度波动产生显著影响,高平均强度下THC的年代际波动周期更长、更显著。对不同平均强度下北大西洋海、气要素与THC在年代际尺度上的相关分布进行分析,发现在高平均强度下,THC与海表温度(sea surface temperature,SST)的相关呈现为经向三核型分布,与海平面气压(sea lever pressure,SLP)的相关呈现为类NAO(North Atlantic oscillation)分布,而在低平均强度下,则不存在这2种模态分布;同时,在不同平均强度下,THC与各要素间的相关程度也不同,高平均强度下相关程度更高。  相似文献   

6.
There is the significant period of tropospheric biennial Oscillation(TBO)over East Asian monsoon region at the interannual timescales,which has the important influences on East China climate.Based on a set of reconstructed indices which describes the western Pacific subtropical high(WPSH)objectively,this paper focuses on the TBO component of WPSH,one of the key members of the East Asian Monsoon system,and its relationships with the tropical SST and atmospheric circulation anomalies.It is found that(1)As an important interannual component of WPSH,the time series of TBO has the obvious transition in the late1970s,and the variability of the WPSH’s TBO component is more significant after the late 1970s.(2)The time-lag correlations between the WPSH’s TBO and the tropical sea surface temperature(SST)anomalies in several key ocean regions are more significant and have longer correlation duration than the raw data.The response of the western boundary index to ENSO is earlier than the intensity index,and the time-lag correlations of them are up to maximum when lagging ENSO by 3–5 months and 5–6months,respectively.(3)In the course of the WPSH’s TBO cycle,the occurrence of the El Ni o-like anomaly in the tropical central-eastern Pacific in winter is always coupled with the weak East Asian winter monsoon,with the most significant enhancing phase of the WPSH’TBO.In contrast,the La Ni a-like anomaly in the central-eastern Pacific in winter is coupled with the strong East Asian winter monsoon,with the most weakening phase of the WPSH’s TBO.(4)The distribution of the tropical SST and atmospheric circulations anomalies are asymmetric in the TBO cycle.The WPSH’s TBO is more significant in the period of the developing El Ni o-like anomaly in central-eastern Pacific than in the period of the developing La Ni a-like anomaly.Therefore,during the period of developing El Ni o-like anomaly,more attention should be paid to the interannual component of TBO signal in the short-term climate prediction.  相似文献   

7.
The relationship between winter sea surface temperature (SST) east of Australia and summer precipitation in the Yangtze River valley and a possibly related physical mechanism were investigated using observation data. It is found that winter SST east of Australia is correlated positively to summer precipitation in the Yangtze River valley. When the SST east of Australia becomes warmer in winter, the western Pacific subtropical high and the East Asian westerly jet tend to shift southward the following summer, concurrent with low-level southwesterly anomalies over eastern China. These conditions favor precipitation increase in the Yangtze River valley, whereas the opposite conditions favor precipitation decrease. The influence of winter SST east of Australia on East Asian summer atmospheric circulations may occur in two ways. First, by an anomalous SST signal east of Australia in winter that persists through the following summer, thus affecting East Asian atmospheric circulations via the inter-hemispheric teleconnection. Second, when the SST east of Australia is warmer in winter, higher SST appears simultaneously in the southwest Indian Ocean and subsequently develops eastward by local air-sea interaction. As a result, the SST in the Maritime Continent increases in summer, which may lead to an anomalous change in East Asian summer atmospheric circulations through its impact on convection.  相似文献   

8.
红矮星是宇宙中数量最多的恒星,其表面辐射温度比太阳的辐射温度低得多,因此,红矮星的宜居带与恒星的距离非常近.因为距离其恒星较近,在强大引力的作用下,位于红矮星宜居带内的宜居行星很可能是潮汐锁相行星.锁相行星的特征是其一侧永远面对恒星,另一侧则永远背对恒星,从而形成极端不均匀的加热.我们在本文中使用一个真实的大气环流模式与平板海洋相耦合来研究锁相行星表面的气候要素和大气环流特征.我们特别针对两种自转速度进行了模拟试验.结果发现,在慢速自转条件下(自转和公转周期均为243天),大气环流基本是热力驱动的下层辐合和上层辐散的运动,行星的表面仅有恒星直射点附近比较湿润,其他区域均比较干燥,背阳面尤其寒冷.在快速自转条件下(自转和公转周期均为l天),科里奥利力的作用比较显著,大气环流以纬向西风为主,并呈现波动特征,赤道上空出现超级旋转的西风急流,湿润区域显著扩大.EP通量诊断分析表明,赤道超级旋转急流是由于热带Rossby波随高度向极地方向传播所产生的EP通量在赤道附近的辐散造成的.  相似文献   

9.
使用NCEP/NCAR再分析资料, 对53年(1958?2010年)冬季的平流层北半球环状模(NAM)正、负异常下传期间乌拉尔山阻塞高压的活动特征分别进行合成分析。结果表明, 在平流层NAM负异常下传期间, 阻塞高压事件的发生频次更高, 生命期更长, 并且在空间上发展得更加深厚。阻塞高压崩溃之后, 冷空气主体偏北, 所造成的我国北方地区降温也更强。通过对E-P 通量分析发现, 在NAM负异常下传期间, 乌拉尔山区域的波动更容易向上传播, 更有助于对流层乌拉尔山阻塞高压的维持和发展。这些结果对利用平流层环流异常信号预测我国北方冬季短期气候变率, 尤其是寒潮天气有重要意义。  相似文献   

10.
 利用1951~2008年1月的中国160站气温降水资料和NCEP/NCAR再分析资料,分析了2008年1月中国南方地区罕见低温冰雪天气的气候特征及其成因,结果表明:①中国南方地区持续的低温和降水叠加是形成罕见低温冰雪灾害的直接原因;②2008年1月亚洲地区大气环流异常,出现了4个较异常的环流.乌拉尔山地区阻塞高压环流异常偏强,导致冷空气活动频繁、气流南北交换较强;东亚槽异常偏强,利于强冷空气南下;西太平洋副热带高压异常偏北,对冷空气滞留在中国南方地区和持续水汽输送起重要作用;高原南侧的南支槽异常偏强,这是持续水汽输送的必要条件;③导致中国南方地区罕见低温冰雪天气的主要原因是大气异常环流的异常配置.乌山阻塞经向环流较大,但东亚槽的位置偏北偏东,在加强气流东西交换的同时削弱了冷空气南下的速度;副高较强,一方面阻挡了强冷气团的快速南下,另一方面加强了副高西侧偏南气流的水汽输送;高原南侧的南支槽的强弱对水汽的输送起决定性作用.  相似文献   

11.
The modern atmospheric observation and literatural historical drought-flood records were used to extract the inter-decadal signals of dry-wet modes in eastern China and reveal the possible relationship of global and China temperature changes associated with the East Asian summer monsoon advances.A climate pattern of "wet-north and dry-south" in eastern China and cool period in China and globe are associated with the strong summer monsoon that can advance further to the northernmost part in the East Asian monsoon region.On the contrary,a climate pattern of "dry-north and wet-south" in eastern China and a warm period in China and globe are associated with the weaker summer monsoon that only reaches the southern part in the region.An interdecadal oscillation with the timescale about 60 years was found dominating in both the dry-wet mode index series of the East Asian summer monsoon and the global temperature series after the secular climate states and long-term trend over inter-centennial timescales have been removed.  相似文献   

12.
Tomé and Miranda’s climate trend turning discriminatory model is used to identify the spatial-temporal characteristics of the interdecadal turning of winter/summer climate modes at stations and in eight sub-areas over Chinese mainland based on the 1961–2000 observations. It is found that the stations with close occurrence years of the interdecadal trend turning (ITT) and coincident trends after the ITT exhibit a zonal distribution. A view is accordingly proposed that the interdecadal turnings of climate modes in China have remarkably regional structures. The research results show that after the early 1980s, winter climate over Chinese mainland overall trends towards a “warm-wet” mode, while summer climate had an abrupt change into “warm wet” mode in the late 1980s, suggesting that the time of the “warm-wet” mode turning for winter climate is earlier than that for summer climate. The regional characteristics and test results of the ITTs in eight sub-areas suggest that winter climate exhibits a distinctive “warm-dry” trend in North China after the late 1970s, and a slight “warm-dry” trend in Northeast China, South China, and Southwest China after the late 1980s. A “warm-wet” trend appears in the rest four sub-areas (the middle and lower reaches of the Yangtze River and the Huaihe River Valley, briefly Jianghuai, the east of the Tibetan plateau, and the east and west of Northwest China) after the early 1980s. The summer climate trends towards a “warm-dry” mode in Northeast China, North China and the east of Northwest China after the late 1980s, but a “warm-wet” mode appears in Southwest China and the east of the Tibetan plateau after the middle 1970s, as well as in Jianghuai and the west of Northwest China after the early 1980s. Specially, summer climate in South China started a “cold-wet” trend in 1984.  相似文献   

13.
为了研究梅雨期西太副高的变化特征及其对梅雨降水的影响,本文利用1951-2016年西太副高监测指数,采用自组织映射(self-organizing map,SOM)方法对梅雨期西太副高进行聚类分析,得到9种SOM分型,并利用中国1km分辨率逐月降水量数据集和中国雨季历年信息表进行不同西太副高分型下梅雨降水的特征分析。结果表明,9种梅雨期西太副高分型对应着多种不同的梅雨降水特征:纬向上,当西太副高偏东时,梅雨区降水强度偏低,反之则强度偏高。经向上,在西太副高主体位于我国陆地的前提下,脊线指数高于25°N时,梅雨区大部被副热带高压控制,整体降水偏少且有小幅度南少北多态势;脊线指数偏低时,副高控制梅雨区南部边缘或更南地区,水汽输送导致降水整体偏多。本文得到了不同类型副高与梅雨降水特征的对应关系,也说明SOM方法能较好地对副热带高压等气象要素做出客观分型,并进行气候现象的相关性研究。  相似文献   

14.
Global atmospheric variables can be physically decomposed into four components:(1) the zonal time averaged climate symmetric component,(2) the time averaged climate asymmetric,(3) the zonal-mean transient symmetric anomaly,and (4) the transient asymmetric anomaly.This study analyzes the relationships between the intra-seasonal and inter-annual variability of planetary scale decomposed zonal and meridional winds in the tropopause,and oscillations such as those from the El Ni o-Southern Oscillation (ENSO),the Arctic Oscillation (AO) and the Antarctic Oscillation (AAO).The tropical inter-annual zonal mean wind anomalies in the tropopause are linked with the ENSO cycle and can propagate into the subtropics,mid-latitudes,and polar front regions via abnormal meridional vertical cells.Similarly,tropical intra-seasonal (40-60-d) zonal wind anomalies can reach the subtropics and mid-latitudes.The polar intra-seasonal zonal wind anomalies in the tropopause can propagate toward high-latitude areas.Thus,the AO and the AAO are the result of the interaction and propagation of these planetary scale zonal wind anomalies.  相似文献   

15.
Brandt P  Funk A  Hormann V  Dengler M  Greatbatch RJ  Toole JM 《Nature》2011,473(7348):497-500
Climate variability in the tropical Atlantic Ocean is determined by large-scale ocean-atmosphere interactions, which particularly affect deep atmospheric convection over the ocean and surrounding continents. Apart from influences from the Pacific El Ni?o/Southern Oscillation and the North Atlantic Oscillation, the tropical Atlantic variability is thought to be dominated by two distinct ocean-atmosphere coupled modes of variability that are characterized by meridional and zonal sea-surface-temperature gradients and are mainly active on decadal and interannual timescales, respectively. Here we report evidence that the intrinsic ocean dynamics of the deep equatorial Atlantic can also affect sea surface temperature, wind and rainfall in the tropical Atlantic region and constitutes a 4.5-yr climate cycle. Specifically, vertically alternating deep zonal jets of short vertical wavelength with a period of about 4.5?yr and amplitudes of more than 10?cm?s(-1) are observed, in the deep Atlantic, to propagate their energy upwards, towards the surface. They are linked, at the sea surface, to equatorial zonal current anomalies and eastern Atlantic temperature anomalies that have amplitudes of about 6?cm?s(-1) and 0.4?°C, respectively, and are associated with distinct wind and rainfall patterns. Although deep jets are also observed in the Pacific and Indian oceans, only the Atlantic deep jets seem to oscillate on interannual timescales. Our knowledge of the persistence and regularity of these jets is limited by the availability of high-quality data. Despite this caveat, the oscillatory behaviour can still be used to improve predictions of sea surface temperature in the tropical Atlantic. Deep-jet generation and upward energy transmission through the Equatorial Undercurrent warrant further theoretical study.  相似文献   

16.
Based on NCEP/NCAR monthly mean reanalysis data and surface observations of Chinese stations, inter-hemispheric oscillations (IHO) of spring atmospheric mass on an interannual basis in conjunction with the linkage to the synchronous climate over China are studied. Results suggest that the spring IHO exhibits a significant seesaw pattern for air mass at bi-hemispheric mid-high latitudes, with a consistent vertical circulation structure. The EOF decomposition of zonally mean surface pressures without signals of Arctic Oscillation (AO) and Antarctic Oscillation (AAO) indicates that the EOF1 IHO feature is remarkable, with the corresponding time coefficients correlated with the spring IHO index (IIHO) at 0.93; the spring IHO bears a close relation to the synchronous climate in China, showing the surface pressure, temperature and relative humidity over the country to be in good correlation with IIHO; the spring duststorms in Qinghai, Gansu, Shaanxi and Inner Mongolia have bearing on IHO. Positive-phase IIHO promotes the strengthening of the Siberian high, during which zonal winds between 60°E and 150°W show a longitudinal teleconnection structure extending from the Arctic to Antarctica, leading to positive westerly wind anomalies over Asia, affecting the spring climate of China.  相似文献   

17.
It is well known that the predictable period of daily weather is generally within 2-3 weeks, so spatio-temporal mean predictands have to be employed in the monthly, seasonal, and annual predictions. At present, rainfall patterns (RPs)[1-5] are the key for…  相似文献   

18.
The multi-spatial variability modes of the Atlantic Meridional Overturning Circulation (MOC) are identified in the natural coupled simulation of two climate models, the MOC either oscillates at decadal scales with strong cross- equatorial flow or fluctuates locally at interannual scales with weaker cross-equatorial flow. Former studies mainly emphasize the paleo-environmental and paleo-climatic impacts of the meridional overturning states transition; this analysis indicates the existence of the multi-spatial variability modes of the MOC at interannual to decadal scales. Further analysis indicates that the conventionally used MOC index, which is defined as the maximum zonal mean meridional stream-function of the North Atlantic, cannot properly describe the multi-spatial variability characteristics of the MOC.  相似文献   

19.
To study the long-term variation of the East Asian summer monsoon (EASM), the Asian-Pacific Oscillation index (IAPO), representing a zonal thermal contrast between Asia and the North Pacific, is reconstructed over the past millennium. During the Little Ice Age (LIA), the variability of the reconstructed IAPO is closely linked to dry-wet anomalies in eastern China on the centennial scale. This correlation pattern is consistent with the observation during the current period, which suggests that the reconstructed IAPO may generally represent the centennial-scale variation of the EASM and rainfall anomalies over eastern China during the LIA.  相似文献   

20.
Using the NCEP/NCAR and JRA-25 monthly analysis data from 1979 to 2011, this paper analyzes the interdecadal variations of winter (Dec.–Feb.) mean surface air temperature (SAT) over East Asia by means of the empirical orthogonal function (EOF) analysis method. Two dominant modes were extracted, with the leading mode basically depicting a sign consistent SAT variation and the second mode describing a meridional dipole structure between the northern and southern parts of East Asia. These two modes can explain more than 60% of the variance. The leading mode is closely related to the intensity of Siberian high and the East Asian winter monsoon. The second mode exhibits a notable interdecadal shift in the late 1990s, with a turning point around 1996/1997. Winter SAT in the northern (southern) part of East Asia tends to be cooler (warmer) since the late 1990. Winter sea level pressure (SLP) differences between 1997–2011 and 1979–1996 show negative (positive) anomalies over southern (northern) Eurasia. At 500-hPa, an anomalous blocking high occurs over northern Eurasia, while a cyclone anomaly appears over northern East Asia. In addition, the upper-level East Asian jet stream tends to shift northward and become stronger after the late 1990. Indeed, the interdecadal shift of winter SAT over East Asia is dynamical consistent with changes of the large-scale atmospheric circulation in the late 1990s. The result indicates that previous autumn sea surface temperature (SST) in the North Atlantic Ocean, the Northern Indian Ocean and the western North Pacific Ocean, as well as sea ice concentration (SIC) in the northern Eurasia marginal seas and the Beaufort Sea also experienced obvious changes in the late 1990s. In particular, the interdecadal shifts of both SST in the North Atlantic Ocean and SIC in the Arctic Ocean and its marginal seas are well coherent with that of the winter SAT over East Asia. The results indicate that the interdecadal shift of East Asian winter SAT may be related to changes in the North Atlantic SST and the Arctic SIC in the late 1990s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号