首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large-scale deletions of mitochondrial DNA (mtDNA) are associated with a subgroup of mitochondrial encephalomyopathies. We studied seven patients with Kearns-Sayre syndrome or isolated ocular myopathy who harboured a sub-population of partially-deleted mitochondrial genomes in skeletal muscle. Variable cytochrome c oxidase (COX) deficiencies and reduction of mitochondrially-encoded polypeptides were found in affected muscle fibres, but while many COX-deficient fibres had increased levels of mutant mtDNA, they almost invariably had reduced levels of normal mtDNA. Our results suggest that a specific ratio between mutant and wild-type mitochondrial genomes is the most important determinant of a focal respiratory chain deficiency, even though absolute copy numbers may vary widely.  相似文献   

2.
Neurospora crassa ARG13 and Saccharomyces cerevisiae ARG11 encode mitochondrial carrier family (MCF) proteins that transport ornithine across the mitochondrial inner membrane. We used their sequences to identify EST candidates that partially encode orthologous mammalian transporters. We thereby identified such a gene (ORNT1) that maps to 13q14 and whose expression, similar to that of other urea cycle (UC) components, was high in liver and varied with changes in dietary protein. ORNT1 expression restores ornithine metabolism in fibroblasts from patients with hyperammonaemia-hyperornithinaemia-homocitrullinuria (HHH) syndrome. In a survey of 11 HHH probands, we identified 3 ORNT1 mutant alleles that account for 21 of 22 possible mutant ORNT1 genes in our patients: F188delta, which is common in French-Canadian HHH patients and encodes an unstable protein; E180K, which encodes a stable, properly targeted protein that is inactive; and a 13q14 microdeletion. Our results show that ORNT1 encodes the mitochondrial ornithine transporter involved in UC function and is defective in HHH syndrome.  相似文献   

3.
Isolated human microphthalmia/anophthalmia, a cause of congenital blindness, is a clinically and genetically heterogeneous developmental disorder characterized by a small eye and other ocular abnormalities. Three microphthalmia/anophthalmia loci have been identified, and two others have been inferred by the co-segregation of translocations with the phenotype. We previously found that mice with ocular retardation (the or-J allele), a microphthalmia phenotype, have a null mutation in the retinal homeobox gene Chx10 (refs 7,8). We report here the mapping of a human microphthalmia locus on chromosome 14q24.3, the cloning of CHX10 at this locus and the identification of recessive CHX10 mutations in two families with non-syndromic microphthalmia (MIM 251600), cataracts and severe abnormalities of the iris. In affected individuals, a highly conserved arginine residue in the DNA-recognition helix of the homeodomain is replaced by glutamine or proline (R200Q and R200P, respectively). Identification of the CHX10 consensus DNA-binding sequence (TAATTAGC) allowed us to demonstrate that both mutations severely disrupt CHX10 function. Human CHX10 is expressed in progenitor cells of the developing neuroretina and in the inner nuclear layer of the mature retina. The strong conservation in vertebrates of the CHX10 sequence, pattern of expression and loss-of-function phenotypes demonstrates the evolutionary importance of the genetic network through which this gene regulates eye development.  相似文献   

4.
Optic atrophy type 1 (OPA1, MIM 165500) is a dominantly inherited optic neuropathy occurring in 1 in 50,000 individuals that features progressive loss in visual acuity leading, in many cases, to legal blindness. Phenotypic variations and loss of retinal ganglion cells, as found in Leber hereditary optic neuropathy (LHON), have suggested possible mitochondrial impairment. The OPA1 gene has been localized to 3q28-q29 (refs 13-19). We describe here a nuclear gene, OPA1, that maps within the candidate region and encodes a dynamin-related protein localized to mitochondria. We found four different OPA1 mutations, including frameshift and missense mutations, to segregate with the disease, demonstrating a role for mitochondria in retinal ganglion cell pathophysiology.  相似文献   

5.
6.
Extensive complementation between fused mitochondria is indicated by recombination of 'parental' mitochondrial (mt) DNA (ref. 1,2) of yeast and plant cells. It has been difficult, however, to demonstrate the occurrence of complementation between fused mitochondria in mammalian species through the presence of recombinant mtDNA molecules, because sequence of mtDNA throughout an individual tends to be uniform owing to its strictly maternal inheritance. We isolated two types of respiration-deficient cell lines, with pathogenic mutations in mitochondrial tRNAIle or tRNALeu(UUR) genes from patients with mitochondrial diseases. The coexistence of their mitochondria within hybrids restored their normal morphology and respiratory enzyme activity by 10-14 days after fusion, indicating the presence of an extensive and continuous exchange of genetic contents between the mitochondria. This complementation between fused mitochondria may represent a defence of highly oxidative organelles against mitochondrial dysfunction caused by the accumulation of mtDNA lesions with age.  相似文献   

7.
Lysinuric protein intolerance (LPI; OMIM 222700) is a rare, recessive disorder with a worldwide distribution, but with a high prevalence in the Finnish population; symptoms include failure to thrive, growth retardation, muscle hypotonia and hepatosplenomegaly. A defect in the plasma membrane transport of dibasic amino acids has been demonstrated at the baso-lateral membrane of epithelial cells in small intestine and in renal tubules and in plasma membrane of cultured skin fibroblasts from LPI patients. The gene causing LPI has been assigned by linkage analysis to 14q11-13. Here we report mutations in SLC7A7 cDNA (encoding y+L amino acid transporter-1, y+LAT-1), which expresses dibasic amino-acid transport activity and is located in the LPI region, in 31 Finnish LPI patients and 1 Spanish patient. The Finnish patients are homozygous for a founder missense mutation leading to a premature stop codon. The Spanish patient is a compound heterozygote with a missense mutation in one allele and a frameshift mutation in the other. The frameshift mutation generates a premature stop codon, eliminating the last one-third of the protein. The missense mutation abolishes y+LAT-1 amino-acid transport activity when co-expressed with the heavy chain of the cell-surface antigen 4F2 (4F2hc, also known as CD98) in Xenopus laevis oocytes. Our data establish that mutations in SLC7A7 cause LPI.  相似文献   

8.
Remodeling of the cytoskeleton is central to the modulation of cell shape and migration. Filamin A, encoded by the gene FLNA, is a widely expressed protein that regulates re-organization of the actin cytoskeleton by interacting with integrins, transmembrane receptor complexes and second messengers. We identified localized mutations in FLNA that conserve the reading frame and lead to a broad range of congenital malformations, affecting craniofacial structures, skeleton, brain, viscera and urogenital tract, in four X-linked human disorders: otopalatodigital syndrome types 1 (OPD1; OMIM 311300) and 2 (OPD2; OMIM 304120), frontometaphyseal dysplasia (FMD; OMIM 305620) and Melnick-Needles syndrome (MNS; OMIM 309350). Several mutations are recurrent, and all are clustered into four regions of the gene: the actin-binding domain and rod domain repeats 3, 10 and 14/15. Our findings contrast with previous observations that loss of function of FLNA is embryonic lethal in males but manifests in females as a localized neuronal migration disorder, called periventricular nodular heterotopia (PVNH; refs. 3-6). The patterns of mutation, X-chromosome inactivation and phenotypic manifestations in the newly described mutations indicate that they have gain-of-function effects, implicating filamin A in signaling pathways that mediate organogenesis in multiple systems during embryonic development.  相似文献   

9.
Juvenile polyposis (JP; OMIM 174900) is an autosomal dominant gastrointestinal hamartomatous polyposis syndrome in which patients are at risk for developing gastrointestinal cancers. Previous studies have demonstrated a locus for JP mapping to 18q21.1 (ref. 3) and germline mutations in the homolog of the gene for mothers against decapentaplegic, Drosophila, (MADH4, also known as SMAD4) in several JP families. However, mutations in MADH4 are only present in a subset of JP cases, and although mutations in the gene for phosphatase and tensin homolog (PTEN) have been described in a few families, undefined genetic heterogeneity remains. Using a genome-wide screen in four JP kindreds without germline mutations in MADH4 or PTEN, we identified linkage with markers from chromosome 10q22-23 (maximum lod score of 4.74, straight theta=0.00). We found no recombinants using markers developed from the vicinity of the gene for bone morphogenetic protein receptor 1A (BMPR1A), a serine-threonine kinase type I receptor involved in bone morphogenetic protein (BMP) signaling. Genomic sequencing of BMPR1A in each of these JP kindreds disclosed germline nonsense mutations in all affected kindred members but not in normal control individuals. These findings indicate involvement of an additional gene in the transforming growth factor-beta (TGF-beta) superfamily in the genesis of JP, and document an unanticipated function for BMP in colonic epithelial growth control.  相似文献   

10.
SHANK3 (also known as ProSAP2) regulates the structural organization of dendritic spines and is a binding partner of neuroligins; genes encoding neuroligins are mutated in autism and Asperger syndrome. Here, we report that a mutation of a single copy of SHANK3 on chromosome 22q13 can result in language and/or social communication disorders. These mutations concern only a small number of individuals, but they shed light on one gene dosage-sensitive synaptic pathway that is involved in autism spectrum disorders.  相似文献   

11.
Protein-protein interaction analyses have uncovered a ciliary and basal body protein network that, when disrupted, can result in nephronophthisis (NPHP), Leber congenital amaurosis, Senior-L?ken syndrome (SLSN) or Joubert syndrome (JBTS). However, details of the molecular mechanisms underlying these disorders remain poorly understood. RPGRIP1-like protein (RPGRIP1L) is a homolog of RPGRIP1 (RPGR-interacting protein 1), a ciliary protein defective in Leber congenital amaurosis. We show that RPGRIP1L interacts with nephrocystin-4 and that mutations in the gene encoding nephrocystin-4 (NPHP4) that are known to cause SLSN disrupt this interaction. RPGRIP1L is ubiquitously expressed, and its protein product localizes to basal bodies. Therefore, we analyzed RPGRIP1L as a candidate gene for JBTS and identified loss-of-function mutations in three families with typical JBTS, including the characteristic mid-hindbrain malformation. This work identifies RPGRIP1L as a gene responsible for JBTS and establishes a central role for cilia and basal bodies in the pathophysiology of this disorder.  相似文献   

12.
A gene mutated in Charcot-Marie-Tooth disease type 4B (CMT4B), an autosomal recessive demyelinating neuropathy with myelin outfoldings, has been mapped on chromosome 11q22. Using a positional-cloning strategy, we identified in unrelated CMT4B patients mutations occurring in the gene MTMR2, encoding myotubularin-related protein-2, a dual specificity phosphatase (DSP).  相似文献   

13.
Diabetes mellitus (DM) is one of the most common chronic disorders of children and adults. Several reports have suggested an increased incidence of maternal transmission in some forms of DM. Therefore, we tested a pedigree with maternally transmitted DM and deafness for mitochondrial DNA mutations and discovered a 10.4 kilobase (kb) mtDNA deletion. This deletion is unique because it is maternally inherited, removes the light strand origin (OL) of mtDNA replication, inhibits mitochondrial protein synthesis, and is not associated with the hallmarks of mtDNA deletion syndromes. This discovery demonstrates that DM can be caused by mtDNA mutations and suggests that some of the heterogeneity of this disease results from the novel features of mtDNA genetics.  相似文献   

14.
We have identified nonsense mutations in the gene CDSN (encoding corneodesmosin) in three families suffering from hypotrichosis simplex of the scalp (HSS; OMIM 146520). CDSN, a glycoprotein expressed in the epidermis and inner root sheath (IRS) of hair follicles, is a keratinocyte adhesion molecule. Truncated CDSN aggregates were detected in the superficial dermis and at the periphery of hair follicles. Our findings suggest that CDSN is important in normal scalp hair physiology.  相似文献   

15.
Anonychia and hyponychia congenita (OMIM 206800) are rare autosomal recessive conditions in which the only presenting phenotype is the absence or severe hypoplasia of all fingernails and toenails. After determining linkage to chromosome 20p13, we identified homozygous or compound heterozygous mutations in the gene encoding R-spondin 4 (RSPO4), a secreted protein implicated in Wnt signaling, in eight affected families. Rspo4 expression was specifically localized to developing mouse nail mesenchyme at embryonic day 15.5, suggesting a crucial role in nail morphogenesis.  相似文献   

16.
Using a candidate gene approach, we identified a novel human gene, OTOF, underlying an autosomal recessive, nonsyndromic prelingual deafness, DFNB9. The same nonsense mutation was detected in four unrelated affected families of Lebanese origin. OTOF is the second member of a mammalian gene family related to Caenorhabditis elegans fer-1. It encodes a predicted cytosolic protein (of 1,230 aa) with three C2 domains and a single carboxy-terminal transmembrane domain. The sequence homologies and predicted structure of otoferlin, the protein encoded by OTOF, suggest its involvement in vesicle membrane fusion. In the inner ear, the expression of the orthologous mouse gene, mainly in the sensory hair cells, indicates that such a role could apply to synaptic vesicles.  相似文献   

17.
Chorea-acanthocytosis is a neurodegenerative disorder with peripheral red cell acanthocytosis. Linkage of chorea-acanthocytosis to chromosome 9q21 has been found. We refined the locus region and identified a previously unknown, full-length cDNA encoding a presumably structural protein, which we called chorein. We found a deletion in the coding region of the cDNA leading to a frame shift resulting in the production of a truncated protein in both alleles of patients and in single alleles of obligate carriers.  相似文献   

18.
19.
Autosomal recessive limb-girdle muscular dystrophies (AR LGMDs) are a genetically heterogeneous group of disorders that affect mainly the proximal musculature. There are eight genetically distinct forms of AR LGMD, LGMD 2A-H (refs 2-10), and the genetic lesions underlying these forms, except for LGMD 2G and 2H, have been identified. LGMD 2A and LGMD 2B are caused by mutations in the genes encoding calpain 3 (ref. 11) and dysferlin, respectively, and are usually associated with a mild phenotype. Mutations in the genes encoding gamma-(ref. 14), alpha-(ref. 5), beta-(refs 6,7) and delta (ref. 15)-sarcoglycans are responsible for LGMD 2C to 2F, respectively. Sarcoglycans, together with sarcospan, dystroglycans, syntrophins and dystrobrevin, constitute the dystrophin-glycoprotein complex (DGC). Patients with LGMD 2C-F predominantly have a severe clinical course. The LGMD 2G locus maps to a 3-cM interval in 17q11-12 in two Brazilian families with a relatively mild form of AR LGMD (ref. 9). To positionally clone the LGMD 2G gene, we constructed a physical map of the 17q11-12 region and refined its localization to an interval of 1.2 Mb. The gene encoding telethonin, a sarcomeric protein, lies within this candidate region. We have found that mutations in the telethonin gene cause LGMD 2G, identifying a new molecular mechanism for AR LGMD.  相似文献   

20.
Pigmentation of the skin is of great social, clinical and cosmetic significance. Several genes that, when mutated, give rise to altered coat color in mice have been identified; their analysis has provided some insight into melanogenesis and human pigmentation diseases. Such analyses do not, however, fully inform on the pigmentation of lower vertebrates because mammals have only one kind of chromatophore, the melanocyte. In contrast, the medaka (a small, freshwater teleost) is a suitable model of the lower vertebrates because it has all kinds of chromatophores. The basic molecular genetics of fish are known and approximately 70 spontaneous pigmentation mutants have been isolated. One of these, an orange-red variant, is a homozygote of a well-known and common allele, b, and has been bred for hundreds of years by the Japanese. Here, we report the first successful positional cloning of a medaka gene (AIM1): one that encodes a transporter that mediates melanin synthesis. The protein is predicted to consist of 12 transmembrane domains and is 55% identical to a human EST of unknown function isolated from melanocytes and melanoma cells. We also isolated a highly homologous gene from the mouse, indicating a conserved function of vertebrate melanogenesis. Intriguingly, these proteins have sequence and structural similarities to plant sucrose transporters, suggesting a relevance of sucrose in melanin synthesis. Analysis of AIM1 orthologs should provide new insights into the regulation of melanogenesis in both teleosts and mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号