首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 233 毫秒
1.
镁离子掺杂对LiFePO4/C复合正极材料性能的影响   总被引:1,自引:0,他引:1  
为了提高正极材料LiFePO4的电化学性能,采用两步固相法合成LiFe1-xMgxPO4/C(x=0、0.01、0.02、0.03、0.04)复合正极材料,并对所得样品进行XRD、SEM、以及充放电循环性能测试.测试结果表明:掺杂少量的Mg2+并没有影响材料的结构,所得样品都为单一的橄榄石型;充放电结果表明掺杂Mg2+为0.02的样品即LiFe0.98Mg<,002>PO4/C电化学性能最佳,在0.2C倍率下首次放电比容量为149.32 mAh/g,经过50个循环,仍然有138.37 mAh/g,衰减仅率为7.33%.  相似文献   

2.
以Ce为掺杂源,蔗糖为碳源,利用溶胶-凝胶法合成了LiFe1-xCexPO4/C正极材料,并采用SEM、XRD、EIS等分析方法重点考察了不同Ce掺杂量及Ce掺杂同时碳包覆样品的结构及电化学性能。结果表明,所制备的样品均为橄榄石结构,颗粒粒径明显细化。电化学性能测试表明,Ce掺杂量为1%(摩尔分数)时性能最佳,0.1C(C为倍率)放电,其容量可达153.1mAh/g,50次循环后容量保持96.7%;既掺Ce又包覆碳的效果更好,0.1C下其容量可达162.4mAh/g,50次循环后容量几乎没有衰减,1C时其容量可达109mAh/g,表现了良好的倍率性能。EIS测试表明,Ce的掺杂可以明显改善电极表面电化学反应的动力学性能,降低电极/电解液界面电荷转移电阻,Ce掺杂同时碳包覆样品的改善效果更为明显。  相似文献   

3.
采用固相烧结法,合成了一系列橄榄石型LiFe1-xNixPO4/C (x = 0, 0.02, 0.04, 0.06)复合正极材料. 通过XRD、充放电和TEM等现代手段,研究了样品的物相结构、电化学性能等. 充放电测试表明,LiFe0.98Ni0.02PO4/C以0.1 C倍率电流放电时,首次放电容量分别为142.0 mAh/g. 样品还表现出很好的倍率性能,当以2 C的倍率放电时,放电容量达到了121.3 mAh/g. 结果表明少量Ni离子掺杂可改善LiFePO4的电化学性能. 透射电镜表明LiFe0.98Ni0.02PO4/C样品表面包覆了一层大约2.8 nm厚的碳层.  相似文献   

4.
以高价的Ti 4+为掺杂离子、聚乙烯醇(PVA)为碳源,通过高温固相法制备了原位立体碳包覆的LiFe0.96Ti0.02PO4/C正极材料.采用XRD,SEM,TEM及EDS对材料的微观结构进行了表征,通过循环伏安、交流阻抗以及恒流充放电实验测试材料的电化学性能.结果表明,PVA的热解碳导电优良且最易于实现原位立体包覆LiFePO4,经过原位立体碳包覆和钛掺杂综合改性后,活性材料在不降低原有高温结构稳定性的前提下,具备了更优良的低温电化学性能和倍率性能:于0℃时0.1C和30℃时5C的放电比容量分别为128.7mAh/g和97.4mAh/g.  相似文献   

5.
采用体相掺杂法对LiFePO4进行改性,采用Mg对LiFePO4进行掺杂,研究Mg的掺杂量对LiFePO4材料电化学性能的影响.研究结果表明,经掺杂改性后的LiFe1-xMgxPO4(x=0.01,0.05,0.10,0.15)材料的充放电容量和循环性能均有所提高,其中,样品LiFe0.85Mg0.15PO4的性能最佳,其首次放电容量为125.6 mA·h/g,循环6次后容量仍达123.0 mA·h/g;Mg部分取代LiFePO4材料中的Fe后所得材料的电子电导率提高了1×106倍,从而提高了材料的电化学性能.  相似文献   

6.
采用共沉淀-微波法,利用自制加料装置合成了橄榄石型LiFePO4/C. 利用SEM、交流阻抗及恒流充放电技术对样品进行形貌表征和电化学性能测试. 结果表明微波8min样品具有均匀结构和较好电化学性能;0.2 C充放电表明,首次放电比容量157.81 mAh/g,53周循环后仍为156.15 mAh/g,材料具有良好的循环性能;1C充放电时,第一次放电容量为136.30 mAh/g,经20周循环后容量没有明显衰减,材料的倍率性能较佳.  相似文献   

7.
采用高能球磨辅助固相法制备碳包覆并掺杂Mn的LiFePO4正极材料LiFe1-xMnxPO4(x=0.04、0.05、0.06和0.07)。通过X线衍射光谱仪(XRD)、场发射扫描电子显微镜(FESEM)、比表面积(BET)及恒流充放电等测试手段考察Mn的掺杂量及碳的包覆量对LiFePO4的结构、形貌及电化学性能的影响,最终确定优化条件。结果表明:Mn掺杂量x=0.06及碳的前驱体(蔗糖)添加量为LiFe0.94Mn0.06PO4质量的2.5%(碳最终质量分数为1.26%)时,所获得的碳包覆和Mn掺杂的LiFePO4正极材料的电化学性能最优异,其0.1C倍率的放电比容量为165.1 mA·h/g,10C倍率的放电比容量仍达92.4 mA·h/g,50次循环后容量保持率分别为96.7%及89.2%。  相似文献   

8.
以柠檬酸为碳源、草酸亚铁为铁源、乙酸镁为镁源,采用喷雾干燥–碳热还原法制备了一系列镁离子掺杂磷酸铁锂(LiMgxFe1-xPO_4/C)材料,并研究了镁离子对喷雾干燥-碳热还原法制备的球形磷酸铁锂材料结构和电化学性能的影响.结果表明,实验制得的LiMgxFe1-xPO_4/C材料具有规则的球形空心结构和高的比容量;当Mg~(2+)含量较小时其对磷酸铁锂晶体结构不产生影响,其中LiMg0.04Fe0.96PO4/C具有最好的充放电性能,在0.2C、0.5C、1.0C、2.0C、5.0C倍率下首次放电比容量分别为149.0、145.6、141.3、132.6、123.3mAh/g,1.0C倍率下充放电循环100周后容量保持率大于97.3%.  相似文献   

9.
采用自蔓延燃烧法制备钕离子掺杂锰酸锂(LiMn1.99Nd0.01O4)纳米颗粒,通过XRD、SEM、CV等表征分析了材料的晶体结构、微观形貌和电化学性能.结果表明:钕离子掺杂不影响晶体结构,但可减小LiMn2O4颗粒粒径,进而提高其电化学性能.在0.2C倍率下的放电比容量高达125.6 mAh·g-1.在1C倍率下的首次放电容量为118.4 mAh·g-1,循环100次后的放电比容量为110.4 mAh·g-1,容量保持率为93.2%.  相似文献   

10.
采用以柠檬酸为配位剂的溶胶-凝胶法制备了复合掺杂Al、Cl两种元素的锂离子电池正极材料LiMn2_xAlxO4_yCly.采用X射线衍射、透射电子显微镜及充放电循环等方法分析研究了不同掺杂量对材料结构、粒径及电化学性能的影响.结果表明,制备的样品具有良好的尖晶石结构,其中LiMn1.9A10.103.9C10.1的高温(55C)循环性能最佳,初始放电比容量为105.2 mAh/g,25次循环后容量仅衰减4.37%.显示Al-Cl复合掺杂能有效的改善尖晶石的高温电化学性能.  相似文献   

11.
∶采用高温固相法合成LiFePO4锂离子电池正极材料,为提高LiFePO4材料的电化学性能,对其进行Ti4 掺杂改性.用XRD、SEM等测试手段对材料进行表征,并对以Li1-xTixFePO4(x=0,0.01,0.03,0.05)为正极的电池进行电化学性能测试.研究表明,掺杂过程中,掺杂离子能与LiFePO4形成晶格完整、有序的单相固溶体;少量的掺杂离子还可以提高材料的电导率和电化学性能,特别是大电流放电性能,其中Li0.97Ti0.03FePO4性能最优,以0.2C5放电,首次放电质量比容量为132.0 mA.h/g,50次循环后仍保持为131.5 mA.h/g.  相似文献   

12.
利用半固相碳热还原法制备了橄榄石型LiFe1-xNixPO4(x=0,0.02,0.05,0.08)锂离子电池正极材料.并用XRD、充放电测试、循环伏安、电化学阻抗测试等研究了其结构和电化学性能.实验结果表明:所制备材料均具有单一的橄榄石结构,其中材料LiFe0.95Ni0.05,PO4的电化学性能最佳.在0.2C和2.4~4.0V条件下恒流充放电,首次放电比容量可达139.35mAh·g^-1,30次循环后放电比容量仍保持在133.98mAh·g^-1以上,保持率为96.15%.循环伏安和电化学阻抗测试表明材料具有良好的充放电可逆性和较小的阻抗。  相似文献   

13.
锂离子电池正极材料Li1-xVxFePO4/C的制备及电化学性能   总被引:1,自引:0,他引:1  
采用高温固相法合成了Li1-xVxFePO4/C(x=0,0.01,0.02,0.03,0.04,0.05,0.10)锂离子电池正极材料,通过XRD,SEM,CV,EIS和恒流充放实验研究了不同掺杂量对产物结构和电化学性能的影响。结果表明,少量V的掺杂未影响到LiFePO4的晶体结构,但显著改善了其电化学性能。其中,Li0.98V0.02FePO4/C材料以0.1 C倍率放电时,首次放电容量达到160.9 mAh·g^-1,且循环性能良好。  相似文献   

14.
采用溶胶-凝胶法和化学沉积法制备了Li4Ti4.75Cu0.25O12/SnO2复合活性材料。通过X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电测试对材料进行结构、形貌表征及电化学性能测试。结果表明:Li4Ti4.75Cu0.25O12/SnO2复合活性物质能够进一步改善倍率性能的同时,循环性能也得到了很好的保证。当电压在1~3 V时,电流密度为1C倍率条件下,Li4Ti4.75Cu0.25O12/SnO2复合材料首次放电比容量高达202.55 m A·h/g。经过50次循环后,容量仍保持在202.51 m A·h/g,容量保持率高达99.98%。  相似文献   

15.
采用固相法合成纯相的LiFe(MoO4)2材料.利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和超导量子干涉仪(SQUID)对其晶体结构及其磁学性质进行研究,并采用恒流充放电测试研究该材料在3.0~1.0V内的电化学性质.电化学测试表明,LiFe(MoO4)2作为正极材料具有良好的循环性能,稳定比容量为200mA·h/g,充放电效率为98.5%.  相似文献   

16.
文章采用固相法合成了电化学性能优异的碳包覆的锂离子电池负极材料Li3.9Mn0.1Ti5O12/C,并对材料进行了XRD、激光粒度分析、循环伏安测试及恒电流充放电测试。结果表明:Mn的掺杂未改变材料的晶体结构,由于Mn4+对Li4Ti5O12的晶胞内部的掺杂和C对其晶胞外部的包覆,使复合材料的电导率,大电流循环稳定性和可逆比容量都明显提高。在1C充放电循环时,Li3.9Mn0.1Ti5O12/C首次放电容量为162.4mAh/g,50次循环后,稳定在159.6mAh/g,容量保持率为98.3%;在2C充放电循环时,首次放电容量达到了153.5mAh/g,展示了优良的电化学特性。  相似文献   

17.
以氧化铁为铁源,通过简单的固相碳热法制备LiFePO4-MWCNTs复合正极粉体材料.利用XRD和SEM表征LiFePO4-MWCNTs复合材料的结构和表面形貌.利用EIS、CV和充放电测试实验测量LiFePO4-MWCNTs复合材料的电化学性能.XRD结果显示复合材料为橄榄石型的磷酸铁锂纯相,多壁碳管在正极材料中将颗粒相连,增加导电面积,形成三维网络结构,为颗粒之间提供附加的导电通道.通过添加质量分数为5%的多壁碳管的方法对LiFePO4正极材料导电通道进行改善.在0.5C充放电速率下首次放电比容量可以达到151.6mAh/g,充放电50次后,放电比容量还能保持在145.5mAh/g,在1C充放电速率下比容量保持在140mAh/g,2C时比容量保持在130mAh/g.随着充放电速率的增加,锂离子电池的性能也更加优越.  相似文献   

18.
正极材料LiFePO4的电化学性能的改进   总被引:9,自引:1,他引:9  
采用固相反应法合成了LiFePO4正极材料,在20mA/g的电流密度下进行恒电流充放电,比容量可以达到135mAh/g,为了改进LiFePO4的性能,提高其高倍率性能,尝试了两种途径并合成出Li(Fe0.8Mn0.2)PO4和LiFePO4/C。低倍率充放电实验得出的两个样品的比容量分别可达到145mAh/g和144mAh/g,而且表现出了良好的循环性能和平坦的电压平台,以上两种方法制备出的材料均具有较好的高倍率性能。  相似文献   

19.
In this paper, Li_2FeSi_(0.98)M_(0.02)O_4/C(M = Mg, Zn, Co, Mn, Ni) was synthesized as cathode material for lithium ion battery by solid-state method. The results show that the materials doped with Mg and Zn at the Si-sites have good initial discharge capacity. Then Li_2FeSi_(1-x)M_xO_4/C(M = Mg, Zn; x = 0.01, 0.02, 0.03, 0.05) were also synthesized via solid-state method. It is concluded that Li_2FeSi_(0.99)Mg_(0.01)O_4/C and Li_2FeSi_(0.98)Zn_(0.02)O_4/C have better initial discharge capacity which is 125 mAh/g and 166.2 mAh/g, respectively. The capacity of Li_2Fe_(0.98)Zn_(0.02)SiO_4/C is 157.3 m Ah/g after 10 cycles at 0.1 C, and the capacity retention rate is 94.6%. The Li~+ diffusion coefficient of Li_2FeSi_(0.98)Zn_(0.02)O_4/C is higher than that of pure phase materials by one order of magnitude. The Li_2FeSi_(0.99)Mg_(0.01)O_4/C and Li_2FeSi_(0.98)Zn_(0.02)O_4/C were tested by XRD and SEM. XRD patterns indicate that the crystal structure of Li_2FeSiO_4 is not changed after being doped with metal ion at the Si-site. The SEM image indicates that no obvious agglomeration is detected in these materials. Li_2FeSi_(0.98)Zn_(0.02)O_4/C processes better electrochemical performance analyzed by EDS、XPS and FT-IR spectra. The data prove that Si~(4+) is successfully replaced by Zn~(2+) in the crystal structure of Li_2FeSiO_4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号