首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
In this paper we intend to discuss the importance of providing a physical representation of quantum superpositions which goes beyond the mere reference to mathematical structures and measurement outcomes. This proposal goes in the opposite direction to the project present in orthodox contemporary philosophy of physics which attempts to “bridge the gap” between the quantum formalism and common sense “classical reality”—precluding, right from the start, the possibility of interpreting quantum superpositions through non-classical notions. We will argue that in order to restate the problem of interpretation of quantum mechanics in truly ontological terms we require a radical revision of the problems and definitions addressed within the orthodox literature. On the one hand, we will discuss the need of providing a formal redefinition of superpositions which captures explicitly their contextual character. On the other hand, we will attempt to replace the focus on the measurement problem, which concentrates on the justification of measurement outcomes from “weird” superposed states, and introduce the superposition problem which focuses instead on the conceptual representation of superpositions themselves. In this respect, after presenting three necessary conditions for objective physical representation, we will provide arguments which show why the classical (actualist) representation of physics faces severe difficulties to solve the superposition problem. Finally, we will also argue that, if we are willing to abandon the (metaphysical) presupposition according to which ‘Actuality = Reality’, then there is plenty of room to construct a conceptual representation for quantum superpositions.  相似文献   

2.
In the first half of this two-part article (Aerts et al. in Found Sci. doi: 10.1007/s10699-017-9528-9, 2017b), we analyzed a cognitive psychology experiment where participants were asked to select pairs of directions that they considered to be the best example of Two Different Wind Directions, and showed that the data violate the CHSH version of Bell’s inequality, with same magnitude as in typical Bell-test experiments in physics. In this second part, we complete our analysis by presenting a symmetrized version of the experiment, still violating the CHSH inequality but now also obeying the marginal law, for which we provide a full quantum modeling in Hilbert space, using a singlet state and suitably chosen product measurements. We also address some of the criticisms that have been recently directed at experiments of this kind, according to which they would not highlight the presence of genuine forms of entanglement. We explain that these criticisms are based on a view of entanglement that is too restrictive, thus unable to capture all possible ways physical and conceptual entities can connect and form systems behaving as a whole. We also provide an example of a mechanical model showing that the violations of the marginal law and Bell inequalities are generally to be associated with different mechanisms.  相似文献   

3.
We put forward a possible new interpretation and explanatory framework for quantum theory. The basic hypothesis underlying this new framework is that quantum particles are conceptual entities. More concretely, we propose that quantum particles interact with ordinary matter, nuclei, atoms, molecules, macroscopic material entities, measuring apparatuses,  in a similar way to how human concepts interact with memory structures, human minds or artificial memories. We analyze the most characteristic aspects of quantum theory, i.e. entanglement and non-locality, interference and superposition, identity and individuality in the light of this new interpretation, and we put forward a specific explanation and understanding of these aspects. The basic hypothesis of our framework gives rise in a natural way to a Heisenberg uncertainty principle which introduces an understanding of the general situation of ‘the one and the many’ in quantum physics. A specific view on macro and micro different from the common one follows from the basic hypothesis and leads to an analysis of Schrödinger’s Cat paradox and the measurement problem different from the existing ones. We reflect about the influence of this new quantum interpretation and explanatory framework on the global nature and evolutionary aspects of the world and human worldviews, and point out potential explanations for specific situations, such as the generation problem in particle physics, the confinement of quarks and the existence of dark matter.  相似文献   

4.
We put forward a new view of relativity theory that makes the existence of a flow of time compatible with the four-dimensional block universe. To this end, we apply the creation-discovery view elaborated for quantum mechanics to relativity theory and in such a way that time and space become creations instead of discoveries and an underlying non temporal and non spatial reality comes into existence. We study the nature of this underlying non temporal and non spatial reality and reinterpret many aspects of the theory within this new view. We show that data of relativistic measurements are sufficient to derive the three-dimensionality of physical space. The nature of light and massive entities is reconsidered, and an analogy with human cognition is worked out.  相似文献   

5.
Anthropomorphic Quantum Darwinism as an Explanation for Classicality   总被引:1,自引:1,他引:0  
According to Zurek, the emergence of a classical world from a quantum substrate could result from a long selection process that privileges the classical bases according to a principle of optimal information. We investigate the consequences of this principle in a simple case, when the system and the environment are two interacting scalar particles supposedly in a pure state. We show that then the classical regime corresponds to a situation for which the entanglement between the particles (the system and the environment) disappears. We describe in which circumstances this factorisability condition is fulfilled, in the case that the particles interact via position-dependent potentials, and also describe in appendix the tools necessary for understanding our results (entanglement, Bell inequalities and so on).  相似文献   

6.
7.
Why Axiomatize?     
Axiomatization is uncommon outside mathematics, partly for being often viewed as embalming, partly because the best-known axiomatizations have serious shortcomings, and partly because it has had only one eminent champion, namely David Hilbert (Math Ann 78:405–415, 1918). The aims of this paper are (a) to describe what will be called dual axiomatics, for it concerns not just the formalism, but also the meaning (reference and sense) of the key concepts; and (b) to suggest that every instance of dual axiomatics presupposes some philosophical view or other. To illustrate these points, a theory of solidarity will be crafted and axiomatized, and certain controversies in both classical and quantum physics, as well as in the philosophy of mind, will be briefly discussed. The upshot of this paper is that dual axiomatics, unlike the purely formal axiomatics favored by the structuralists school, is not a luxury but a tool helping resolve some scientific controversies.  相似文献   

8.
In this paper we describe in some detail a formal computer model of inferential discourse based on a belief system. The key issue is that a logical model in a computer, based on rational sets, can usefully model a human situation based on irrational sets. The background of this work is explained elsewhere, as is the issue of rational and irrational sets (Billinge and Addis, in: Magnani and Dossena (eds.), Computing, philosophy and cognition, 2004; Stepney et al., Journey: Non-classical philosophy—socially sensitive computing in journeys non-classical computation: A grand challenge for computing research, 2004). The model is based on the Belief System (Addis and Gooding, Proceedings of the AISB’99 Symposium on Scientific Creativity, 1999) and it provides a mechanism for choosing queries based on a range of belief. We explain how it provides a way to update the belief based on query results, thus modelling others’ experience by inference. We also demonstrate that for the same internal experience, different models can be built for different actors.
Tom AddisEmail:
  相似文献   

9.
We argue from the Church-Turing thesis (Kleene Mathematical logic. New York: Wiley 1967) that a program can be considered as equivalent to a formal language similar to predicate calculus where predicates can be taken as functions. We can relate such a calculus to Wittgenstein’s first major work, the Tractatus, and use the Tractatus and its theses as a model of the formal classical definition of a computer program. However, Wittgenstein found flaws in his initial great work and he explored these flaws in a new thesis described in his second great work; the Philosophical Investigations. The question we address is “can computer science make the same leap?” We are proposing, because of the flaws identified by Wittgenstein, that computers will never have the possibility of natural communication with people unless they become active participants of human society. The essential difference between formal models used in computing and human communication is that formal models are based upon rational sets whereas people are not so restricted. We introduce irrational sets as a concept that requires the use of an abductive inference system. However, formal models are still considered central to our means of using hypotheses through deduction to make predictions about the world. These formal models are required to continually be updated in response to peoples’ changes in their way of seeing the world. We propose that one mechanism used to keep track of these changes is the Peircian abductive loop.  相似文献   

10.
The Mathematical Intelligencer recently published a note by Y. Sergeyev that challenges both mathematics and intelligence. We examine Sergeyev’s claims concerning his purported Infinity computer. We compare his grossone system with the classical Levi-Civita fields and with the hyperreal framework of A. Robinson, and analyze the related algorithmic issues inevitably arising in any genuine computer implementation. We show that Sergeyev’s grossone system is unnecessary and vague, and that whatever consistent subsystem could be salvaged is subsumed entirely within a stronger and clearer system (IST). Lou Kauffman, who published an article on a grossone, places it squarely outside the historical panorama of ideas dealing with infinity and infinitesimals.  相似文献   

11.
量子纠缠及其哲学意义   总被引:2,自引:0,他引:2  
20世纪90年代以来,兴起了量子信息论,量子纠缠从理论走向实践.量子纠缠是量子信息与量子隐形传态的关键.量子纠缠是一个特殊的超空间、非定域的量子关联.它涉及非定域性、内部时空、个体性、纠缠资源、相互作用、对称性、同一性等一系列重大的哲学问题,拓展出新的哲学意义.  相似文献   

12.
13.
We consider processes of emergence within the conceptual framework of the Information Loss principle and the concepts of (1) systems conserving information; (2) systems compressing information; and (3) systems amplifying information. We deal with the supposed incompatibility between emergence and computability tout-court. We distinguish between computational emergence, when computation acquires properties, and emergent computation, when computation emerges as a property. The focus is on emergence processes occurring within computational processes. Violations of Turing-computability such as non-explicitness and incompleteness are intended to represent partially the properties of phenomenological emergence, such as logical openness, given by the observer’s cognitive role; structural dynamics where change regards rules rather than only values; and multi-modelling where multiple non-equivalent models are required to model such structural dynamics. In this way, we validate, from an epistemological viewpoint, models and simulations of phenomenological emergence where the sequence of events constitutes the natural, analogical non-Turing computation which a cognitive complex system can reproduce through learning. Reproducibility through learning is different from Turing-like computational iteration. This paper aims to open a new, non-reductionist understanding of the conceptual relationship between emergence and computability.  相似文献   

14.
An epistemological interpretation of quantum mechanics hinges on the claim that the distinctive features of quantum mechanics can be derived from some distinctive features of an observational basis. Old and new variations of this theme are listed. The program has a limited success in non-relativistic quantum mechanics. The crucial issue is how far it can be extended to quantum field theory without introducing significant ontological postulates. A C*-formulation covers algebraic quantum field theory, but not the standard model. Julian Schwinger’s anabatic methodology extended a strict measurement-based formulation of quantum mechanics through field theory. His extension also excluded the quark hypothesis and the standard model. Quarks and local gauge invariance are postulates that go beyond the limits of an epistemological interpretation of quantum mechanics. The ontological significance ascribed to these advances depends on the role accorded ontology.
Edward MacKinnonEmail:
  相似文献   

15.
Very large databases are a major opportunity for science and data analytics is a remarkable new field of investigation in computer science. The effectiveness of these tools is used to support a “philosophy” against the scientific method as developed throughout history. According to this view, computer-discovered correlations should replace understanding and guide prediction and action. Consequently, there will be no need to give scientific meaning to phenomena, by proposing, say, causal relations, since regularities in very large databases are enough: “with enough data, the numbers speak for themselves”. The “end of science” is proclaimed. Using classical results from ergodic theory, Ramsey theory and algorithmic information theory, we show that this “philosophy” is wrong. For example, we prove that very large databases have to contain arbitrary correlations. These correlations appear only due to the size, not the nature, of data. They can be found in “randomly” generated, large enough databases, which—as we will prove—implies that most correlations are spurious. Too much information tends to behave like very little information. The scientific method can be enriched by computer mining in immense databases, but not replaced by it.  相似文献   

16.
计算复杂性、量子计算及其哲学意义   总被引:5,自引:0,他引:5  
量子计算机具有超越经典计算机的能力。量子计算具有并行性和整体性,某些量子算法具有加速性。量子计算揭示了:数学与物理学之间的紧密关系,量子力学的波函数具有实在性。量子计算具有克服计算复杂性的能力。  相似文献   

17.
The question of Heidegger’s reflections on technology is explored in terms of ‘living with’ technology and including the socio-theoretical (Edinburgh) notion of ‘entanglement’ towards a review of Heidegger’s understanding of technology and media, including the entertainment industry and modern digital life. I explore Heidegger’s reflections on Gelassenheit by way of the Japanese aesthetic conception of life and of art as wabi-sabi understood with respect to Heidegger’s Gelassenheit as the art of Verfallenheit.  相似文献   

18.
We present a cognitive psychology experiment where participants were asked to select pairs of spatial directions that they considered to be the best example of Two different wind directions. Data are shown to violate the CHSH version of Bell’s inequality with the same magnitude as in typical Bell-test experiments with entangled spins. Wind directions thus appear to be conceptual entities connected through meaning, in human cognition, in a similar way as spins appear to be entangled in experiments conducted in physics laboratories. This is the first part of a two-part article. In the second part (Aerts et al. in Found Sci, 2017) we present a symmetrized version of the same experiment for which we provide a quantum modeling of the collected data in Hilbert space.  相似文献   

19.
Technology moves us to a better world. We contend that through technology people can simplify and solve moral tasks when they are in presence of incomplete information and possess a diminished capacity to act morally. Many external things, usually inert from the moral point of view, can be transformed into the so-called moral mediators. Hence, not all of the moral tools are inside the head, many of them are shared and distributed in “external” objects and structures which function as ethical devices.
Emanuele BardoneEmail:
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号