首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 984 毫秒
1.
马铃薯PGBSS—GUS融合基因在块茎中专一性表达的初步研究   总被引:1,自引:0,他引:1  
从GBSS基因克隆上,酶切得到5上游区1.2kb的序列,与GUS报告基基因融合,构建了PGBSS1.2表达载体,通过农杆菌介导的方式,将PGBSS1.2转和马铃薯品种Desiree,卡那霉素筛选获得抗性再生植和微薯,利用PCR特异性扩增和Southern Blotting的方法证明了融合基因在马铃薯基因组中的整合,X-Glue活体染色表明,微薯切片具有高GUS酶活性,而茎段中GUS活性相对较低,初  相似文献   

2.
报道了玉米醇溶蛋白基因启动子的亚克隆以及利用该启动子和GUS基因来构建表达质粒pHZP-GUS。经过部分降解和亚克隆,得到玉米醇溶蛋白基因启动子,将该启动子与含GUS基因编码序列和NOS终止子的BamH I片段连接,构成融合基因。将该融合基因克隆到含有HPT筛选标记基因的质粒pGL2中,得到表达质粒pHZP-GUS。  相似文献   

3.
以小麦品种济南177、384、471的幼胚和济南177的胚性愈伤组织为材料,质粒为pPPI2[含大麦黄矮病毒外壳蛋白(CP)基因和GUS(β-葡萄糖苷酸酶)基因];pPPI5(含CP基因)+pEmuGN(含GUS基因),用高速基因枪轰击钨粉质粒进入幼胚和胚性愈伤组织细胞.GUS基因的瞬间表达平均频率幼胚约为42%,愈伤组织为18.5%.转化处理后用PCR扩增技术检测植株中CP基因是否存在并稳定遗传.检测结果表明,来源于幼胚的T0代转化频率为2~9%(1993~1994年),并获得T1、T2和T3代稳定表达的转化植株.用愈伤组织转化,其转化频率3月龄者为0.4%;2年龄者为零.潮霉素(Hm)用于对转化幼胚和愈伤组织的筛选,低浓度时不能抑制非转化细胞的生长,高浓度则使细胞受伤害,不能再生正常健壮的植株  相似文献   

4.
GUS基因对红豆草部分酶解小细胞团的转化   总被引:1,自引:0,他引:1  
采用电击法,将大肠杆菌的GUS基因(β-葡糖苷酸酶基因为报告基因)导入红豆草部分酶解小细胞团,利用GUS基因产物与底物X-Gluc反应的组织化学定位试验,检测到GUS基因在受体组织中的表达。同时,对部分酶解的程度、不同电压条件下的转化效率以及两种质粒的不同启动子对GUS基因表达的强度等进行了讨论。  相似文献   

5.
大肠杆菌基因启动子探针型载体的构建   总被引:6,自引:5,他引:1  
利用PCR技术将pUC18和pBluescript中的多克隆位点区(MCS)及旁侧序列分别进行扩增,然后将扩增产物插入到已除去LacZα基因的pUC18中,获得三个中间载体pSUGV1,pSGV2和pSUGV3,最后将pSUPV2中无表达活性的新霉素磷酸转移酶Ⅰ(NPTⅠ)基因分别插入到三个中间载体的MCS中,构建成功大肠肝菌基因启动子探针型载体pSUPV4,pSUPV5和pSUPV6.  相似文献   

6.
实验采用PEG介导法转化小麦,用GUS基因作为标志,用荧光法测定Actl-GUS、Emu-GUS、35S-GUS三种质粒转化小麦细胞后的瞬间表达强度,以比较Actl、Emu、35S三种启动子在小表中的表达强度.结果表明,Actl和Emu的强度大致相等,均比35S强.采用Emu为启动子带BYDVCP基因的质粒和经改造过的Act1为启动子带有抗潮霉素选择标记基因的质粒共转化小麦“济南177”的原生质体.转化6d后,用潮霉素进行筛选,最后得到两块抗潮霉素的愈伤组织,转化后4个月,经PCR检测,证明CP基因已整合进一块愈伤组织的细胞基因组中.  相似文献   

7.
早熟禾的组织培养和基因枪介导的基因转化体系的初步建立   总被引:50,自引:0,他引:50  
分析了不同质量浓度的2,4-二硝基苯酚对早熟禾愈伤组织诱导和愈伤组织分化成苗的影响,3mg/L和0.1mg/L2,4-D分别是本试验所用早熟禾基因型诱导形成愈伤组织和愈伤组织分化成勒的最适度量浓度。利用基因针GUS基因的pGA470和pAct1-D质粒导入愈伤组织,通过组织染色法检测到Gus基因的瞬时表达。  相似文献   

8.
将来自pBI121质粒的CaMV35S启动子片段插入到pBI121的CaMV35S启动子与GUS基因之间,构建了串联的CaMV35S启动子载体pLB38.通过三亲交配,将pBI121及pLB38分别转移到含pGv3850的农杆菌中,成为适合本研究的双元载体。以叶圆盘转化法将外源基因转入烟草,获得了2种转基因植株。经DNA分子杂交、NPTⅡ点分析、GUS荧光定性及定量分析,证明外源基因已整合进烟草基因组并获得表达。pLB38的GUS表达量为nBl121的3~4倍,这表明启动子数目的不同会直接影响其启动基因的表达水平。  相似文献   

9.
基因重组人Gamma-干扰素发酵和提取优化工艺的研究   总被引:1,自引:0,他引:1  
对基因重组人Gamma-干扰素(rIFN-γ)PBV220DH5α工程菌株的发酵工艺进行了研究.结果表明,采用在250mL摇瓶中装液量为150mL,按照1∶40的稀释比进行两次扩大培养,并在大肠杆菌生长最为活跃的对数生长期内进行诱导表达效果最好.收集菌体以后,将菌体进行冷冻和超声破碎,并在2.0mol/L脲中浸泡8h~9h以清洗杂蛋白,然后用7.0mol/L盐酸胍(Gu·HCl)提取.在优化工艺条件下,rIFN-γ的收量为9.0×106IU/L~12.8×106IU/L,总蛋白为79.5mg/L~127.2mg/L,比活为5.6×105IU/mg~8.0×105IU/mg,SDS-PAGE电泳含量可达60%~80%,使PBV220DH5α工程菌株获得了高效表达.  相似文献   

10.
以水稻(丹粳-5号)愈伤组织为受体材料,采用基因枪法将含有GUS和HPT基因的CM2质粒导入水稻细胞.经过50mg/L的潮霉素筛选,获得抗性愈伤组织,并在同样筛选压力下诱导分化成苗,获得抗性苗.共获得17个抗性克隆.GUS组织化学检测表明,有12个克隆为GUS阳性,GUS和HPT基因共表达率为70%左右.Southern分子检测证明HPT基因已整合到水稻基因组中.  相似文献   

11.
转VHA-c2-GUS,VHA-c3-GUS和VHA-c5-GUS基因烟草在4℃和40℃温度胁迫以及25℃光/暗处理条件下叶片GUS表达水平表明,VHA-c具有光调控性,并可被逆境温度所调节.VHA-c2,VHA-c3和VHA-c5均可被4℃低温和光照促进表达.40℃高温可显著促进VHA-c3的表达,对VHA-c5有轻微的促进,而对VHA-c2则表现出轻微的抑制作用.  相似文献   

12.
Expression pattern of GASA,downstream genes of DELLA,in Arabidopsis   总被引:3,自引:0,他引:3  
Separation and functional research of related components involved in gibberellins (GAs) signaling are important to clarify the mechanism of GA functioning. Research on the downstream components of DELLA, the key factor of the GA signaling pathway, is limited at present. GASA (GA-Stimulated in Arabidopsis) family contains 15 genes usually regulated by GA in Arabidopsis thaliana. All GASA proteins have a cleavable signal peptide in N terminus and a conserved GASA domain including 12 cysteines in C terminus. RT-PCR analysis revealed that the expression of GASA4 and GASA6 were down-regulated, but GASA 1 and GASA9 were up-regulated in the DELLA mutants, gai-t6 and rga-24, as well as the double mutant, consisting with the results that GASA4 and GASA6 were induced, but GASA1 and GASA9 were inhibited by exogenous GA3. In addition, the expression patterns of other GASA genes were regulated by GA and ABA, separately or cooperatively. Most of GASA genes were expressed in roots, stems, leaves, flowers and developing siliques. GUS gene driven by the promoters of GASA6, GASA7, GASA8, GASA9, GASAIO, GASA11 and GASA12were used as reporters and it was found that all GASA genes expressed in the growing and differentiating organs and abscission zones, suggesting the role of these genes in cell growth and differentiation. This study provided an important basis for functional study of the GASA gene family in the GA and ABA signaling pathway.  相似文献   

13.
采用PCR扩增的方法,构建了OsRac2基因转录起始位点上游1.7 kb的启动子5′缺失植物表达载体,转化烟草并筛选阳性转基因植株.以多种激素处理转基因烟草,通过组织化学分析和GUS荧光活性的检测,证实Os-Rac2启动子上存在着一些激素应答元件,该基因的表达可能受茉莉酸的正调控,脱落酸等激素的负调控.  相似文献   

14.
基因枪法转化香蕉薄片外植体的参数优化   总被引:15,自引:1,他引:14  
采用果用香蕉(Musa spp.)的薄片外植体作为转化受体,通过对GUS基因瞬间表达的研究,找出了较适合的轰击条件和外植体培养条件,研究表明,高渗处理对转化的影响较大,轰击前后对体外植体进行高渗处理的瞬间表达率(14.11%)是对照(3.68%)的3.86倍。预防培养外植体转化的瞬间表达率(17.5%-42.11%)普遍高于没有预培养的外植体(12.20%),并以预培养6d为好。最适压力和射程分别  相似文献   

15.
Two different length fragments, RSF1 and RSF2 which contained the cis-acting sequences of root-spe- cific gene TobRB7, were isolated from tobacco genome. The abilities of these fragments to direct root-specific expression were studied by fusing them to the β-glucuronidase (GUS) report gene with different directions. After the recombined vectors were transformed into tobacco, the expression pattern was performed by histochemical staining and the quantitative analysis of GUS activity. The data suggested that the cis-acting element of TobRB7 gene direct GUS expression not only as root-specific but also as bidirectional. In our studies, the short fragment, RSF2, performed stronger activity than RSF1 with any direction. The stronger activity of GUS expression was determined by reverse inserting of RSF1 or RSF2 than positive inserting.  相似文献   

16.
Two different length fragments, RSF1 and RSF2 which contained the cis-acting sequences of root-specific gene TobRB7, were isolated from tobacco genome. The abilities of these fragments to direct root-specific expression were studied by fusing them to the β-glucuronidase (GUS) report gene with different directions. After the recombined vectors were transformed into tobacco, the expression pattern was performed by histochemical staining and the quantitative analysis of GUS activity. The data suggested that the cis-acting element of TobRB7 gene direct GUS expression not only as root-specific but also as bidirectional. In our studies, the short fragment, RSF2, performed stronger activity than RSF1 with any direction. The stronger activity of GUS expression was determined by reverse inserting of RSF1 or RSF2 than positive inserting.  相似文献   

17.
A bi-directional promoter of Tomato yellow leaf curl China virus (TYLCCNV) was obtained with the total DNA from TYLCCNV isolate Y10 infected tobacco leaves as a template. Plant expression vectors were constructed by fusing the amplified DNA fragment with the gus gene and nopaline terminator in different orientations. The vectors containing promoter fragments were transferred into leaf cells and plant stems of Nicotiana benthamiana by Agrobacterium-mediated method. Transient expression results showed that both the complementary and virion-sense promoters could drive the gus gene to express, and the GUS activity of the complementary-sense promoter was stronger than that of the virion-sense. Co-expression of the vector containing βC1 gene of TYLCCNV DNAβ with the vector containing a bi-directional promoter revealed that the βC1 protein has no impact on expression of either the virion- or the complementary-sense promoter.  相似文献   

18.
Rice (Oryza sativa L.) eating quality is one of themost important traits. Amylose content (AC) in rice en-dosperm is a major index affecting rice eating quality[1,2].It has a negative correlation with gel consistency of rice[3].Based on amylose content, r…  相似文献   

19.
通过PCR扩增,得到苜蓿丫纹夜蛾核型多角体病毒(AutographacalifornicaNuclearPolyhedrosisVirus,AcNPV)具早晚期启动子元件的p35基因启动子,将其插入到杆状病毒转移载体质粒pSXIVVI+X3多克隆位点上游,使之与pSXIVVI+X3质粒中的人工合成后期启动子(PSyn)、多角体XIV启动子(PXIV)串联构成早期、晚期、极晚期能持续启动外源基因表达的转移载体质粒pSX35.将pSX35用于组建含HBsAg基因并形成多角体的重组TnNPV,HB-sAg基因的表达量显著提高,表达时间亦明显提前,从而实现了外源基因在杆状病毒表达系统的全期、高效表达.mRNA引物延伸试验结果显示,Pp35在重组病毒中可产生2套转录本,分别于病毒感染的早期和晚期起始HBsAg基因的表达.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号