首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
RNAi-mediated gene silencing in non-human primates   总被引:2,自引:0,他引:2  
The opportunity to harness the RNA interference (RNAi) pathway to silence disease-causing genes holds great promise for the development of therapeutics directed against targets that are otherwise not addressable with current medicines. Although there are numerous examples of in vivo silencing of target genes after local delivery of small interfering RNAs (siRNAs), there remain only a few reports of RNAi-mediated silencing in response to systemic delivery of siRNA, and there are no reports of systemic efficacy in non-rodent species. Here we show that siRNAs, when delivered systemically in a liposomal formulation, can silence the disease target apolipoprotein B (ApoB) in non-human primates. APOB-specific siRNAs were encapsulated in stable nucleic acid lipid particles (SNALP) and administered by intravenous injection to cynomolgus monkeys at doses of 1 or 2.5 mg kg(-1). A single siRNA injection resulted in dose-dependent silencing of APOB messenger RNA expression in the liver 48 h after administration, with maximal silencing of >90%. This silencing effect occurred as a result of APOB mRNA cleavage at precisely the site predicted for the RNAi mechanism. Significant reductions in ApoB protein, serum cholesterol and low-density lipoprotein levels were observed as early as 24 h after treatment and lasted for 11 days at the highest siRNA dose, thus demonstrating an immediate, potent and lasting biological effect of siRNA treatment. Our findings show clinically relevant RNAi-mediated gene silencing in non-human primates, supporting RNAi therapeutics as a potential new class of drugs.  相似文献   

3.
RNA interference   总被引:545,自引:0,他引:545  
Hannon GJ 《Nature》2002,418(6894):244-251
  相似文献   

4.
5.
Epigenetic information is frequently erased near the start of each new generation. In some cases, however, epigenetic information can be transmitted from parent to progeny (multigenerational epigenetic inheritance). A particularly notable example of this type of epigenetic inheritance is double-stranded RNA-mediated gene silencing in Caenorhabditis elegans. This RNA-mediated interference (RNAi) can be inherited for more than five generations. To understand this process, here we conduct a genetic screen for nematodes defective in transmitting RNAi silencing signals to future generations. This screen identified the heritable RNAi defective 1 (hrde-1) gene. hrde-1 encodes an Argonaute protein that associates with small interfering RNAs in the germ cells of progeny of animals exposed to double-stranded RNA. In the nuclei of these germ cells, HRDE-1 engages the nuclear RNAi defective pathway to direct the trimethylation of histone H3 at Lys?9 (H3K9me3) at RNAi-targeted genomic loci and promote RNAi inheritance. Under normal growth conditions, HRDE-1 associates with endogenously expressed short interfering RNAs, which direct nuclear gene silencing in germ cells. In hrde-1- or nuclear RNAi-deficient animals, germline silencing is lost over generational time. Concurrently, these animals exhibit steadily worsening defects in gamete formation and function that ultimately lead to sterility. These results establish that the Argonaute protein HRDE-1 directs gene-silencing events in germ-cell nuclei that drive multigenerational RNAi inheritance and promote immortality of the germ-cell lineage. We propose that C. elegans use the RNAi inheritance machinery to transmit epigenetic information, accrued by past generations, into future generations to regulate important biological processes.  相似文献   

6.
7.
Lu R  Maduro M  Li F  Li HW  Broitman-Maduro G  Li WX  Ding SW 《Nature》2005,436(7053):1040-1043
The worm Caenorhabditis elegans is a model system for studying many aspects of biology, including host responses to bacterial pathogens, but it is not known to support replication of any virus. Plants and insects encode multiple Dicer enzymes that recognize distinct precursors of small RNAs and may act cooperatively. However, it is not known whether the single Dicer of worms and mammals is able to initiate the small RNA-guided RNA interference (RNAi) antiviral immunity as occurs in plants and insects. Here we show complete replication of the Flock house virus (FHV) bipartite, plus-strand RNA genome in C. elegans. We show that FHV replication in C. elegans triggers potent antiviral silencing that requires RDE-1, an Argonaute protein essential for RNAi mediated by small interfering RNAs (siRNAs) but not by microRNAs. This immunity system is capable of rapid virus clearance in the absence of FHV B2 protein, which acts as a broad-spectrum RNAi inhibitor upstream of rde-1 by targeting the siRNA precursor. This work establishes a C. elegans model for genetic studies of animal virus-host interactions and indicates that mammals might use a siRNA pathway as an antiviral response.  相似文献   

8.
Ma Y  Creanga A  Lum L  Beachy PA 《Nature》2006,443(7109):359-363
RNA interference (RNAi) in both plants and animals is mediated by small RNAs of approximately 21-23 nucleotides in length for regulation of target gene expression at multiple levels through partial sequence complementarities. Combined with widespread genome sequencing, experimental use of RNAi has the potential to interrogate systematically all genes in a given organism with respect to a particular function. However, owing to a tolerance for mismatches and gaps in base-pairing with targets, small RNAs could have up to hundreds of potential target sequences in a genome, and some small RNAs in mammalian systems have been shown to affect the levels of many messenger RNAs besides their intended targets. The use of long double-stranded RNAs (dsRNAs) in Drosophila, where Dicer-mediated processing produces small RNAs inside cells, has been thought to reduce the probability of such 'off-target effects' (OTEs). Here we show, however, that OTEs mediated by short homology stretches within long dsRNAs are prevalent in Drosophila. We have performed a genome-wide RNAi screen for novel components of Wingless (Wg) signal transduction in Drosophila S2R + cells, and found few, if any, legitimate candidates. Rather, many of the top candidates exert their effects on Wg response through OTEs on known pathway components or through promiscuous OTEs produced by tandem trinucleotide repeats present in many dsRNAs and genes. Genes containing such repeats are over-represented in candidate lists from published screens, suggesting that they represent a common class of false positives. Our results suggest simple measures to improve the reliability of genome-wide RNAi screens in Drosophila and other organisms.  相似文献   

9.
A resource for large-scale RNA-interference-based screens in mammals   总被引:2,自引:0,他引:2  
Gene silencing by RNA interference (RNAi) in mammalian cells using small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) has become a valuable genetic tool. Here, we report the construction and application of a shRNA expression library targeting 9,610 human and 5,563 mouse genes. This library is presently composed of about 28,000 sequence-verified shRNA expression cassettes contained within multi-functional vectors, which permit shRNA cassettes to be packaged in retroviruses, tracked in mixed cell populations by means of DNA 'bar codes', and shuttled to customized vectors by bacterial mating. In order to validate the library, we used a genetic screen designed to report defects in human proteasome function. Our results suggest that our large-scale RNAi library can be used in specific, genetic applications in mammals, and will become a valuable resource for gene analysis and discovery.  相似文献   

10.
Qi Y  He X  Wang XJ  Kohany O  Jurka J  Hannon GJ 《Nature》2006,443(7114):1008-1012
  相似文献   

11.
12.
近年来,人们对植物中RNA沉默机制的的认识日渐清晰,小RNAs在其中发挥重要作用.文章综述了植物中RNA沉默的机制、RNA沉默的主要途径及其在防御外源DNA序列入侵过程中的主要功能.并简要介绍了由DNA病毒编码的基因沉默抑制子在对抗宿主沉默反应的作用.文章最后阐述了对RNA沉默进行深入研究的必要性,对需要研究的问题进行了分析,为抗病毒作物育种提供了有力依据.  相似文献   

13.
RNA interference (RNAi) holds considerable promise as a therapeutic approach to silence disease-causing genes, particularly those that encode so-called 'non-druggable' targets that are not amenable to conventional therapeutics such as small molecules, proteins, or monoclonal antibodies. The main obstacle to achieving in vivo gene silencing by RNAi technologies is delivery. Here we show that chemically modified short interfering RNAs (siRNAs) can silence an endogenous gene encoding apolipoprotein B (apoB) after intravenous injection in mice. Administration of chemically modified siRNAs resulted in silencing of the apoB messenger RNA in liver and jejunum, decreased plasma levels of apoB protein, and reduced total cholesterol. We also show that these siRNAs can silence human apoB in a transgenic mouse model. In our in vivo study, the mechanism of action for the siRNAs was proven to occur through RNAi-mediated mRNA degradation, and we determined that cleavage of the apoB mRNA occurred specifically at the predicted site. These findings demonstrate the therapeutic potential of siRNAs for the treatment of disease.  相似文献   

14.
Elbashir SM  Harborth J  Lendeckel W  Yalcin A  Weber K  Tuschl T 《Nature》2001,411(6836):494-498
  相似文献   

15.
16.
Caughey B  Baron GS 《Nature》2006,443(7113):803-810
Prions, the infectious agents of transmissible spongiform encephalopathies (TSEs), have defied full characterization for decades. The dogma has been that prions lack nucleic acids and are composed of a pathological, self-inducing form of the host's prion protein (PrP). Recent progress in propagating TSE infectivity in cell-free systems has effectively ruled out the involvement of foreign nucleic acids. However, host-derived nucleic acids or other non-PrP molecules seem to be crucial. Interactions between TSE-associated PrP and its normal counterpart are also pathologically important, so the physiological functions of normal PrP and how they might be corrupted by TSE infections have been the subject of recent research.  相似文献   

17.
18.
RNA干涉及其在肿瘤研究中的应用   总被引:1,自引:0,他引:1  
RNAi是双链RNA介导的转录后基因沉默的过程,是一种高效的高特异性抑制基因表达的新途径。通过双链小干涉RNA(siRNA)与一系列蛋白质结合形成siRNA诱导的沉默复合体(RISC)并活化,然后,RISC对靶基因进行识别、降解。与反义方法相比,siRNA具有更好的抑制效果。RNAi的应用将为癌症的基因治疗提供新的方法。  相似文献   

19.
20.
RNA interference-mediated inhibition of Hepatitis B Virus replication   总被引:1,自引:0,他引:1  
Persistent and recurrent infection of hepatitis B virus (HBV) represents one of the most common and severe viral infections of humans, and has caused a formidable health problem in the affected countries. Currently used antiviral drugs have a very limited success on controlling HBV replication and infection. RNA interference (RNAi), a process by which double-stranded RNA (dsRNA) directs sequence-specific degradation of target mRNA in mammalian and plant cells, has recently been used to knockdown gene expression in various species. In this study, we sought to determine whether RNAi-mediated silencing of HBV viral gene expression could lead to the effective inhibition of HBV replication. We first developed RNAi vectors that expressed small interfering RNA (siRNA) and targeted the HBV core or surface gene sequence. Our results demonstrated that these specific siRNAs efficiently reduced the levels of corresponding viral RNAs and proteins, and thus suppressed viral replication. Treatment with siRNA gave the greatest reduction in the levels of HBsAg (92%) and in HBeAg (85%) respectively in the cultured cell medium. Our findings further demonstrated that the RNAi-mediated antiviral effect was sequence-specific and dose-dependent. Therefore, our findings strongly suggest that RNAi-mediated silencing of HBV viral genes could effectively inhibit the replication of HBV, hence RNAi-based strategy should be further explored as a more efficacious antiviral therapy of HBV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号